Skip to main content
Log in

Increase in XET activity in bean (Phaseolus vulgaris L.) cells habituated to dichlobenil

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Bean (Phaseolus vulgaris L.) cells have been habituated to grow in lethal concentrations of dichlobenil (DCB), a specific inhibitor of cellulose biosynthesis. Bean callus cells were successively cultured in increasing DCB concentrations up to 2 μM. The 2-μM DCB habituated cells were impoverished in cellulose and xyloglucan, had an increased xyloglucan endotransglucosylase (XET; EC 2.4.1.207) activity, together with an increased growth rate and a decreased molecular size of xyloglucan. However, the application of lethal concentrations of two different cellulose-biosynthesis inhibitors (DCB and isoxaben) for a short period of time produced little effect on XET activity and xyloglucan molecular size. We propose that the weakening of plant cell wall provoked by decrease in cellulose content might promote the xyloglucan tethers and increase the ability of xyloglucan to bind to cellulose in order to give rigidity to the wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DCB:

2,6−dichlorobenzonitrile

XEH:

Xyloglucan endohydrolase activity

XET:

Xyloglucan endotransglucosylase activity

XTH:

Xyloglucan endotransglucosylase/hydrolase protein

XXXG:

Xyloglucan-derived heptasaccharide

References

  • Alonso-Simón A, Encina AE, García-Angulo P, Álvarez JM, Acebes JL (2004) FTIR spectroscopy monitoring of cell wall modifications during the habituation of bean (Phaseolus vulgaris L.) callus cultures to dichlobenil. Plant Sci 167:1273–1281

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Caño-Delgado A, Penfield S, Smith C, Catley M, Bevan M (2003) Reduced cellulose synthesis invokes lignification and defense responses in Arabidopsis thaliana. Plant J 34:351–362

    Article  PubMed  Google Scholar 

  • Catalá C, Rose JKC, Bennett AB (1997) Auxin regulation and spatial localization of an endo-1,4−β-glucanase and xyloglucan endotransglycosylase in expanding tomato hypocotyls. Plant J 12:417–426

    Article  PubMed  Google Scholar 

  • Delmer DP (1987) Cellulose biosynthesis. Annu Rev Plant Physiol 38:259–290

    Article  CAS  Google Scholar 

  • Delmer DP, Read SM, Cooper G (1987) Identification of a protein receptor in cotton fibers for the herbicide 2,6−dichlorobenzonitrile. Plant Physiol 84:415–420

    PubMed  CAS  Google Scholar 

  • Díaz-Cacho P, Moral R, Encina A, Acebes JL, Alvarez JM (1999) Cell wall modifications in bean (Phaseolus vulgaris L.) callus cultures tolerant to isoxaben. Physiol Plant 107:54–59

    Article  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Edelman HG, Fry SC (1992) Effect of cellulose synthesis inhibition on growth and the integration of xyloglucan into pea internode cell walls. Plant Physiol 100:993–997

    Google Scholar 

  • Encina AE, Moral RM, Acebes JL, Alvarez JM (2001) Characterization of cell walls in bean (Phaseolus vulgaris L.) callus cultures tolerant to dichlobenil. Plant Sci 160:331–339

    Article  PubMed  CAS  Google Scholar 

  • Encina A, Sevillano JM, Acebes JL, Alvarez JM (2002) Cell wall modifications of bean (Phaseolus vulgaris L.) cell suspensions during habituation and dehabituation to dichlobenil. Physiol Plant 114:182–191

    Article  PubMed  CAS  Google Scholar 

  • Fry SC (1989) Cellulases, hemicelluloses and auxin-stimulated growth: a possible relationship. Physiol Plant 75:532–536

    Article  CAS  Google Scholar 

  • Fry SC, Smith RC, Renwick KF, Martin DJ, Hodge SK, Matthews KJ (1992) Xyloglucan endotransglycosylase, a new wall-loosening enzyme activity from plants. Biochem J 282:821–828

    PubMed  CAS  Google Scholar 

  • García-Angulo P, Willats WGT, Encina AE, Alonso-Simon A, Alvarez JM, Acebes JL (2006) Immunocytochemical characterization of the cell walls of bean cell suspensions during habituation and dehabituation to dichlobenil. Physiol Plant 127:87–99

    Article  CAS  Google Scholar 

  • Hayashi T (1989) Xyloglucans in the primary cell wall. Annu Rev Plant Physiol Plant Mol Biol 40:139–168

    Article  CAS  Google Scholar 

  • Kaku T, Tabuchi A, Wakabayashi K, Kamisaka S, Hoson T (2002) Action of xyloglucan hydrolase within the native cell wall architecture and its effect on cell wall extensibility in azuki bean epicotyls. Plant Cell Physiol 43:21–26

    Article  PubMed  CAS  Google Scholar 

  • Kooiman P (1960) A method for the determination of amyloid in plant seeds. Recl Trav Chim Pays-Bas Belg 79:675–678

    CAS  Google Scholar 

  • Lima DU, Loh W, Buckeridge MS (2004) Xyloglucan-cellulose interaction depends on the sidechains and molecular weight of xyloglucan. Plant Physiol Biochem 42:389–394

    Article  PubMed  CAS  Google Scholar 

  • Manfield IW, Orfila C, McCartney L, Harholt J, Bernal AJ, Scheller HV, Gilmartin PM, Mikkelsen JD, Knox JP, Willats WGT (2004) Novel cell wall architecture of isoxaben-habituated Arabidopsis suspension-cultured cells: global transcript profiling and cellular analysis. Plant J 40:260–275

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Park YW, Baba K, Furuta Y, Iida I, Sameshima K, Arai M, Hayashi T (2004) Enhancement of growth and cellulose accumulation by overexpression of xyloglucanase in poplar. FEBS Lett 564:183–187

    Article  PubMed  CAS  Google Scholar 

  • Rose JKC, Braam J, Fry SC, Nishitani K (2002) The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: current perspectives and new unifying nomenclature. Plant Cell Physiol 43:1421–1435

    Article  PubMed  CAS  Google Scholar 

  • Sabba RP, Vaughn KC (1999) Herbicides that inhibit cellulose biosynthesis. Weed Sci 47:757–763

    CAS  Google Scholar 

  • Sabba RP, Durso NA, Vaughn KC (1999) Structural and immunocytochemical characterization of the walls of dichlobenil-habituated BY-2 tobacco cells. Int J Plant Sci 160:275–290

    Article  CAS  Google Scholar 

  • Shedletzky E, Shmuel M, Delmer DP, Lamport DTA (1990) Adaptation and growth of tomato cells on the herbicide 2,6−dichlorobenzonitrile leads to production of unique cell walls virtually lacking a cellulose-xyloglucan network. Plant Physiol 94:980–987

    PubMed  CAS  Google Scholar 

  • Shedletzky E, Shmuel M, Trainin T, Kalman S, Delmer D (1992) Cell wall structure in cells adapted to growth on the cellulose-synthesis inhibitor 2,6−dichlorobenzonitrile. Plant Physiol 100:120–130

    Article  PubMed  CAS  Google Scholar 

  • Takeda T, Furuta Y, Awano T, Mizuno K, Mitsuishi Y, Hayashi T (2002) Suppression and acceleration of cell elongation by integration of xyloglucans in pea stem segments. Proc Natl Acad Sci USA 99:9055–9060

    Article  PubMed  CAS  Google Scholar 

  • Updegraff DM (1969) Semimicro determination of cellulose in biological materials. Anal Chem 32:420–424

    CAS  Google Scholar 

  • Vissenberg K, Fry SC, Verbelen JP (2001) Root hair initiation is coupled to a highly localized increase of xyloglucan endotransglycosylase action in Arabidopsis roots. Plant Physiol 127:1125–1135

    Article  PubMed  CAS  Google Scholar 

  • Vissenberg K, Van Sandt V, Fry SC, Verbelen JP (2003) Xyloglucan endotransglucosylase action is high in the root elongation zone and in the trichloblasts of all vascular plants from Selaginella to Zea mays. J Exp Bot 54:335–344

    Article  PubMed  CAS  Google Scholar 

  • Vissenberg K, Fry SC, Pauly M, Hofte H, Verbelen JP (2005) XTH acts at the microfibril-matrix interface during cell elongation. J Exp Bot 56:673–683

    Article  PubMed  CAS  Google Scholar 

  • Wells B, McCann MC, Shedletzky E, Delmer D, Roberts K (1994) Structural features of cell walls from tomato cells adapted to grow on the herbicide 2,6−dichlorobenzonitrile. J Microsc 173:155–164

    CAS  Google Scholar 

  • Xu W, Purugganan MM, Polisensky DH, Antosiewicz DM, Fry SC, Braam J (1995) Arabidopsis TCH4, regulated by hormones and the environment, encodes a xyloglucan endotransglycosylase. Plant Cell 7:1555–1567

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by grants from Junta de Castilla y León (LE 17/04) and the Program for Promotion of Basic Research Activities for Innovative Biosciences (PROBRAIN) and predoctoral grant from the University of León to Ana Alonso-Simón.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Acebes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alonso-Simón, A., García-Angulo, P., Encina, A.E. et al. Increase in XET activity in bean (Phaseolus vulgaris L.) cells habituated to dichlobenil. Planta 226, 765–771 (2007). https://doi.org/10.1007/s00425-007-0523-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-007-0523-1

Keywords

Navigation