Skip to main content
Log in

A majority of cotton genes are expressed in single-celled fiber

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Multicellular eukaryotes contain a diversity of cell types, presumably differing from one another in the suite of genes expressed during development. At present, little is known about the proportion of the genome transcribed in most cell types, nor the degree to which global patterns of expression change during cellular differentiation. To address these questions in a model plant system, we studied the unique and highly exaggerated single-celled, epidermal seed trichomes (“cotton”) of cultivated cotton (Gossypium hirsutum). By taking advantage of advances in expression profiling and microarray technology, we evaluated the transcriptome of cotton fibers across a developmental time-course, from a few days post-anthesis through primary and secondary wall synthesis stages. Comparisons of gene expression in populations of developing cotton fiber cells to genetically complex reference samples derived from 6 different cotton organs demonstrated that a remarkably high proportion of the cotton genome is transcribed, with 75–94% of the total genome transcribed at each stage. Compared to the reference samples, more than half of all genes were up-regulated during at least one stage of fiber development. These genes were clustered into seven groups of expression profiles that provided new insight into biological processes governing fiber development. Genes implicated in vesicle coating and trafficking were found to be overexpressed throughout all stages of fiber development studied, indicating their important role in maintaining rapid growth of this unique plant cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

DPA:

Days Post Anthesis

FDR:

False Discovery Rates

SNARE:

Soluble NSF attachment protein receptor

References

  • Applequist WL, Cronn R, Wendel JF (2001) Comparative development of fiber in wild and cultivated cotton. Evol Dev 3:3–17

    Article  PubMed  CAS  Google Scholar 

  • Aroeti B, Okhrimenko H, Reich V, Orzech E (1998) Polarized trafficking of plasma membrane proteins: emerging roles for coats, SNAREs, GTPases and their link to the cytoskeleton. Biochim Biophys Acta 1376:57–90

    PubMed  CAS  Google Scholar 

  • Arpat AB, Waugh M, Sullivan JP, Gonzales M, Frisch D, Main D, Wood T, Leslie A, Wing RA, Wilkins TA (2004) Functional genomics of cell elongation in developing cotton fibers. Plant Mol Biol 54:911–929

    Article  PubMed  CAS  Google Scholar 

  • Birnbaum K, Shasha DE, Wang JY, Jung JW, Lambert GM, Galbraith DW, Benfey PN (2003) A gene expression map of the Arabidopsis root. Science 302:1956–1960

    Article  PubMed  CAS  Google Scholar 

  • Blackbourn HD, Jackson AP (1996) Plant clathrin heavy chain: sequence analysis and restricted localization in growing pollen tubes. J Cell Sci 109:777–786

    PubMed  CAS  Google Scholar 

  • Bluthgen N, Brand K, Cajavec B, Swat M, Herzel H, Beule D (2005) Biological profiling of gene groups utilizing Gene Ontology. Genome Inform Ser Workshop Genome Inform 16:106–115

    Google Scholar 

  • Campanoni P, Blatt MR (2007) Membrane trafficking and polar growth in root hairs and pollen tubes. J Exp Bot 58:65–74

    Article  PubMed  CAS  Google Scholar 

  • Casson S, Spencer M, Walker K, Lindsey K (2005) Laser capture microdissection for the analysis of gene expression during embryogenesis of Arabidopsis. Plant J 42:111–123

    Article  PubMed  CAS  Google Scholar 

  • Demura T, Tashiro G, Horiguchi G, Kishimoto N, Kubo M, Matsuoka N, Minami A, Nagata-Hiwatashi M, Nakamura K, Okamura Y, Sassa N, Suzuki S, Yazaki J, Kikuchi S, Fukuda H (2002) Visualization by comprehensive microarray analysis of gene expression programs during transdifferentiation of mesophyll cells into xylem cells. Proc Natl Acad Sci U S A 99:15794–15799

    Article  PubMed  Google Scholar 

  • Galbraith DW, Birnbaum K (2006) Global studies of cell type-specific gene expression in plants. Annu Rev Plant Biol 57:451–475

    Article  PubMed  CAS  Google Scholar 

  • Hirling H, Steiner P, Chaperon C, Marsault R, Regazzi R, Catsicas S (2000) Syntaxin 13 is a developmentally regulated SNARE involved in neurite outgrowth and endosomal trafficking. Eur J Neurosci 12:1913–1923

    Article  PubMed  CAS  Google Scholar 

  • Holthuis JCM, Nichols BJ, Pelham HRB (1998) The syntaxin Tlg1p mediates trafficking of chitin synthase III to polarized growth sites in yeast. Mol Biol Cell 9:3383–3397

    PubMed  CAS  Google Scholar 

  • Honys D, Twell D (2004) Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biol DOI:10.1186/gb-2004-5-11-r85

  • Kaufman L, Rousseeuw PJ (1990) Finding groups in data: an introduction to cluster analysis. Wiley, New York

    Google Scholar 

  • Kim HJ, Triplett BA (2001) Cotton fiber growth in planta and in vitro. Models for plant cell elongation and cell wall biogenesis. Plant Physiol 127:1361–1366

    Article  PubMed  CAS  Google Scholar 

  • Kocabas AM, Crosby J, Ross PJ, Otu HH, Beyhan Z, Can H, Tam WL, Rosa GJM, Halgren RG, Lim B, Fernandez E, Cibelli JB (2006) The transcriptome of human oocytes. Proc Natl Acad Sci U S A 103:14027–14032

    Article  PubMed  CAS  Google Scholar 

  • Leonhardt N, Kwak JM, .Robert N, Waner D, Leonhardt G, Schroeder JI (2004) Microarray expression analyses of Arabidopsis guard cells and isolation of a recessive abscisic acid hypersensitive protein phosphatase 2C mutant. Plant Cell 16:596–615

    Article  PubMed  CAS  Google Scholar 

  • Leyman B, Geelen D, Quintero FJ, Blatt MR (1999) A tobacco syntaxin with a role in hormonal control of guard cell ion channels. Science 283:537–540

    Article  PubMed  CAS  Google Scholar 

  • Liu D, Zhang X, Tu L, Zhu L, Guo X (2006) Isolation by suppression-subtractive hybridization of genes preferentially expressed during early and late fiber development stages in cotton. Mol Biol 40:741–749

    Article  CAS  Google Scholar 

  • Macara IG, Spang A (2006) Closing the GAP between polarity and vesicle transport. Cell 125:419–421

    Article  PubMed  CAS  Google Scholar 

  • Nakazono M, Qiu F, Borsuk LA, Schnable PS (2003) Laser-capture microdissection, a tool for the global analysis of gene expression in specific plant cell types: identification of genes expressed differentially in epidermal cells or vascular tissues of maize. Plant Cell 15:583–596

    Article  PubMed  CAS  Google Scholar 

  • Nawy T, Lee JY, Colinas J, Wang JY, Thongrod SC, Malamy JE, Birnbaum K, Benfey PN (2005) Transcriptional profile of the Arabidopsis root quiescent center. Plant Cell 17:1908–1925

    Article  PubMed  CAS  Google Scholar 

  • Neumann U, Brandizzi F, Hawes C (2003) Protein transport in plant cells: in and out of the golgi. Ann Bot 92:167–180

    Article  PubMed  CAS  Google Scholar 

  • Pfenninger KH, Friedman LB (1993) Sites of plasmalemmal expansion in growth cones. Brain Res Dev Brain Res 71:181–192

    Article  PubMed  CAS  Google Scholar 

  • Pina C, Pinto F, Feijo JA, Becker JD (2005) Gene family analysis of the Arabidopsis pollen transcriptome reveals biological implications for cell growth, division control, and gene expression regulation. Plant Physiol 138:744–756

    Article  PubMed  CAS  Google Scholar 

  • Pratelli R, Sutter JU, Blatt MR (2004) A new catch in the SNARE. Trends Plant Sci 9:187–195

    Article  PubMed  CAS  Google Scholar 

  • Rabinowicz PD, Citek R, Budiman MA, Nunberg A, Bedell JA, Lakey N, O’Shaughnessy AL, Nascimento LU, McCombie WR, Martienssen RA (2005) Differential methylation of genes and repeats in land plants. Genome Res 15:1431–1440

    Article  PubMed  CAS  Google Scholar 

  • Rabouille C, Kondo H, Newman R, Hui N, Freemont P, Warren G (1998) Syntaxin 5 is a common component of the NSF- and p97-mediated reassembly pathways of golgi cisternae from mitotic golgi fragments in vitro. Cell 92:603–610

    Article  PubMed  CAS  Google Scholar 

  • Ruan YL, Llewellyn DJ, Furbank RT (2001) The control of single-celled cotton fiber elongation by developmentally reversible gating of plasmodesmata and coordinated expression of sucrose and k+ transporters and expansin. Plant Cell 13:47–60

    Article  PubMed  CAS  Google Scholar 

  • Sanderfoot AA, Raikhel NV (1999) The specificity of vesicle trafficking: coat proteins and SNAREs. Plant Cell 11:629–642

    Article  PubMed  CAS  Google Scholar 

  • Sanderfoot AA, Pilgrim M, Adam L, Raikhel NV (2001) Disruption of individual members of Arabidopsis syntaxin gene families indicates each has essential functions. Plant Cell 13:659–666

    Article  PubMed  CAS  Google Scholar 

  • Schaller AA (2004) cut above the rest: the regulatory function of plant proteases. Planta 220:183–197

    Article  PubMed  CAS  Google Scholar 

  • Schrader J, Nilsson J, Mellerowicz E, Berglund A, Nilsson P, Hertzberg M Sandberg G (2004) A high-resolution transcript profile across the wood-forming meristem of poplar identifies potential regulators of cambial stem cell identity. Plant Cell 16:2278–2292

    Article  PubMed  CAS  Google Scholar 

  • Seagull RW (1990) Tip growth and transition to secondary cell wall synthesis indeveloping cotton hairs. In: Heath IB (ed) Tip growth in plant and fungal cells. Academic Press, San Diego, pp 261–284

    Google Scholar 

  • Shi Y, Zhu S, Mao X, Feng J, Qin Y, Zhang L, Cheng J, Wei L, Wang Z, Zhu Y (2006) Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. Plant Cell 18:651–664

    Article  PubMed  CAS  Google Scholar 

  • Smart LB, Vojdani F, Maeshima M, Wilkins TA (1998) Genes involved in osmoregulation during turgor-driven cell expansion of developing fibers are differentially regulated. Plant Physiol 116:1539–1549

    Article  PubMed  CAS  Google Scholar 

  • Steiner P, Kulangara K, Sarria JCF, Glauser L, Regazzi R, Hirling H (2004) Reticulon 1-C/neuroendocrine-specific protein-C interacts with SNARE proteins. J Neurochem 89:569–580

    Article  PubMed  CAS  Google Scholar 

  • Storey JD, Tibshirani R (2003) SAM thresholding and false discovery rates for detecting differential gene expression in DNA microarrays. In: Parmigiani G, Garrett ES, Irizarry RA, Zeger SL (eds) The analysis of gene expression data: methods and software. Springer, New York, pp 272–290

    Chapter  Google Scholar 

  • Sutter JU, Campanoni P, Tyrrell M, Blatt MR (2006) Selective mobility and sensitivity to SNAREs is exhibited by the Arabidopsis KAT1 k+ channel at the plasma membrane. Plant Cell 18:935–954

    Article  PubMed  CAS  Google Scholar 

  • Taliercio EW, Hendrix B, Stewart JM (2005) DNA content and expression of genes related to cell cycling in developing Gossypium hirsutum (Malvaceae) fibers. Am J Bot 92:1942–1947

    CAS  Google Scholar 

  • Taliercio EW, Boykin D (2007) Analysis of gene expression in cotton fiber initials. BMC Plant Biol DOI:10.1186/1471-2229-7-22

  • Tibshirani R, Walther G, Hastie T (2001) Estimating the number of clusters in a data set via the gap statistic. J R Stat Soc Ser B Stat Methodol 63:411–423

    Article  Google Scholar 

  • Udall JA, Flagel LE, Cheung F, Woodward AW, Hovav R, Rapp RA, Swanson JM, Lee JJ, Gingle AR, Nettleton D, Town CD, Chen ZJ, Wendel JF (2007) Spotted cotton oligonucleotide microarrays for gene expression analysis. BMC Genomics 8:81

    Article  PubMed  Google Scholar 

  • Whittaker DJ, Triplett BA (1999) Gene-specific changes in alpha—tubulin transcript accumulation in developing cotton fibers. Plant Physiol 121:181–188

    Article  PubMed  CAS  Google Scholar 

  • Wilkins TA, Jernstedt JA (1999) Molecular genetics of developing cotton fibers. In: Basra AS (ed) Cotton Fibers. Haworth Press, New York, pp 231–267

    Google Scholar 

  • Wilkins TA, Smart LB (1996) Isolation of RNA from plant tissue. In: Kreig PA (ed) A laboratory guide to RNA isolation, analysis, and synthesis. Wiley-Liss, New York, pp 21–41

    Google Scholar 

  • Wu Y, Liewellyn DJ, White R, Ruggiero K, Al-Ghazi Y, Dennis ES (2007) Laser capture microdissection and cDNA microarrays used to generate gene expression profiles of rapidly expanding fiber initials cells on surface of cotton ovules. Planta DOI 10.1007/s00425-007-0580-5

  • Zhang DS, Hrmova M, Wan CH, Wu CF, Balzen J, Cai W, Wang J, Densmore LD, Fincher GB, Zhang H, Haigler CH (2004) Members of a new group of chitinase-like genes are expressed preferentially in cotton cells with secondary walls. Plant Mol Biol 54:353–372

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

R.H., J.A.U., and J.F.W. conceptualized the experiment. R.H. managed the bench experiments and the data analysis. EH conducted part of the bench experiments. J.A.U., L.F., and R.R. contributed to data analysis. All authors assisted in drafting the manuscript. The authors thank Ryan Percifield for technical assistance, Alan Gingle for database management, Prof. Candace Haigler for help in secondary cell microscopic observations and the US National Science Foundation Plant Genome Program for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan F. Wendel.

Electronic supplementary material

Below are the links to the electronic supplementary material.

[e6](TIF 111 kb)

425_2007_619_MOESM2_ESM.xls

EST ID, Highest Blast hits, Least Square means of the difference between each stage (2,7,10,20,25) and the reference sample, and the standard error for all genes up-regulated in the fiber. Genes in the table are divided according to the cluster analysis. For additional information please see http://cottonevolution.info/ (XLS 1398 kb)

(DOC 441 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hovav, R., Udall, J.A., Hovav, E. et al. A majority of cotton genes are expressed in single-celled fiber. Planta 227, 319–329 (2008). https://doi.org/10.1007/s00425-007-0619-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-007-0619-7

Keywords

Navigation