Skip to main content
Log in

Virus-induced silencing of Comt, pAmt and Kas genes results in a reduction of capsaicinoid accumulation in chili pepper fruits

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Capsaicinoids are responsible for the pungent taste of chili pepper fruits of Capsicum species. Capsaicinoids are biosynthesized through both the phenylpropanoid and the branched-fatty acids pathways. Fragments of Comt (encoding a caffeic acid O-methyltransferase), pAmt (a putative aminotransferase), and Kas (a β-keto-acyl-[acyl-carrier-protein] synthase) genes, that are differentially expressed in placenta tissue of pungent chili pepper, were individually inserted into a Pepper huasteco yellow veins virus (PHYVV)-derived vector to determine, by virus-induced gene silencing, irrespective of whether these genes are involved in the biosynthesis of capsaicinoids. Reduction of the respective mRNA levels as well as the presence of related siRNAs confirmed the silencing of these three genes. Morphological alterations were evident in plants inoculated with PHYVV::Comt and PHYVV::Kas constructs; however, plants inoculated with PHYVV::pAmt showed no evident alterations. On the other hand, fruit setting was normal in all cases. Biochemical analysis of placenta tissues showed that, indeed, independent silencing of all three genes led to a dramatic reduction in capsaicinoid content in the fruits demonstrating the participation of these genes in capsaicinoid biosynthesis. Using this approach it was possible to generate non-pungent chili peppers at high efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Acl1 :

Acyl carrier protein gene

ACS:

Acyl-CoA synthase

AT3 :

Putative acyltransferase gene

BAHD:

BEAT, AHCTs, HCBT and DAT superfamily

BCAT:

Branched-chain amino acid transferase

BSA:

Bovine serum albumin

4CL:

4-Coumarate-CoA ligase

Comt :

Caffeic acid O-methyltransferase gene

csy1 :

Capsaicin synthase gene

C3H:

Coumaroyl shikimate/quinate 3-hydroxylase

C4H:

Cinnamic acid 4-hydroxylase

dpa:

Days post-anthesis

dpi:

Days post-infection

FatA :

Acyl-ACP thioesterase gene

FAS:

Fatty acid synthase complex

HCT:

Hydroxycinnamoyl transferase

Kas :

β-keto-acyl-[acyl-carrier-protein] synthase gene

PAL:

Phenylalanine ammonia-lyase

pAmt :

Putative aminotransferase gene

PTGS:

Post-transcriptional gene silencing

PHYVV:

Pepper huasteco yellow veins virus

siRNA:

Small interfering RNA

VIGS:

Virus-induced gene silencing

WT:

Wild-type

References

  • Abbadi A, Brummel M, Spener F (2000) Knockout of the regulatory site of 3-ketoacyl-ACP synthase III enhances short- and medium-chain acyl-ACP synthesis. Plant J 24:1–9

    Article  PubMed  CAS  Google Scholar 

  • Aluru MR, Mazourek M, Landry LG, Curry J, Jahn M, O’Connell MA (2003) Differential expression of fatty acid synthase genes, Acl, Fat and Kas in Capsicum fruit. J Exp Bot 54:1655–1664

    Article  PubMed  CAS  Google Scholar 

  • Atanassova R, Favet N, Martz F, Chabbert B, Tollier M-T, Monties B, Fritig B, Legrand M (1995) Altered lignin composition in transgenic tobacco expressing O-methyltransferase sequences in sense and antisense orientation. Plant J 8:465–477

    Article  CAS  Google Scholar 

  • Aufsatz W, Mette MF, van der Winden J, Matzke AJ, Matzke M (2002) RNA-directed DNA methylation in Arabidopsis. Proc Natl Acad Sci USA 99(Suppl 4):16499–16506

    Article  PubMed  CAS  Google Scholar 

  • Bennett DJ, Kirby GW (1968) Constitution and biosynthesis of capsaicin. J Chem Soc C:442–446

    Google Scholar 

  • Blum E, Mazourek M, O’Connell MA, Curry J, Thorup T, Liu K, Jahn M, Paran I (2003) Molecular mapping of capsaicinoid biosynthesis genes and quantitative trait loci analysis for capsaicinoid content in Capsicum. Theor Appl Genet 108:79–86

    Article  PubMed  CAS  Google Scholar 

  • Carlsson AS, LaBrie ST, Samuel T, Kinney AJ, von Wettstein-Knowles P, Browse J (2002) A KAS2 cDNA complements the phenotypes of the Arabidopsis fab1 mutant that differs in a single residue bordering the substrate binding pocket. Plant J 29:761–770

    Article  PubMed  CAS  Google Scholar 

  • Carrillo-Tripp J, Shimada-Beltran H, Rivera-Bustamante RF (2006) Use of geminiviral vectors for functional genomics. Curr Opin Plant Biol 9:209–215

    Article  PubMed  CAS  Google Scholar 

  • Curry J, Aluru M, Mendoza M, Nevarez J, Melendrez M, O’Connell MA (1999) Transcripts for possible capsaicinoid biosynthetic genes are differentially accumulated in pungent and non-pungent Capsicum spp. Plant Sci 148:47–57

    Article  CAS  Google Scholar 

  • Chung E, Seon E, Kim YC, Chung EJ, Oh SK, Lee S, Park JM, Joung YH, Choi D (2004) A method of high frequency virus-induced silencing in chili pepper (Capsicum annuum L. cv. Bukang). Mol Cells 17:377–380

    PubMed  CAS  Google Scholar 

  • Dehesh K, Edwards P, Fillati J, Slabaugh M, Byrne J (1998) KAS IV: a 3-ketoacyl-ACP synthase from Cuphea sp. is a medium chain specific condensing enzyme. Plant J 15:383–390

    Article  PubMed  CAS  Google Scholar 

  • Dehesh K, Taim H, Edwards P, Byrne J, Jaworski JG (2001) Overexpression of 3-ketoacyl-acyl-carrier protein synthase IIIs in plants reduces the rate of lipid synthesis. Plant Physiol 125:1103–1114

    Article  PubMed  CAS  Google Scholar 

  • Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097

    Article  PubMed  CAS  Google Scholar 

  • Fujiwake H, Suzuki T, Iwai K (1980) Intracellular localization of capsaicin and its analogues in Capsicum fruit. II. The vacuole as the intracellular accumulation site of capsaicinoids in the protoplast of Capsicum fruit. Plant Cell Physiol 21:1023–1030

    CAS  Google Scholar 

  • Garzón-Tiznado JA, Torres-Pacheco I, Ascencio-Ibañez JT, Herrera-Estrella L, Rivera-Bustamante RF (1993) Inoculation of peppers with infectious clones of a new geminivirus by biolistic procedure. Phytopathology 83:514–521

    Article  Google Scholar 

  • Guevara-González RG, Ramos PL, Rivera-Bustamante RF (1999) Complementation of coat protein mutants of Pepper Huasteco geminivirus in transgenic tobacco plants. Phytopathology 89:540–545

    Article  Google Scholar 

  • Halpin C (2004) Investigating and manipulating lignin biosynthesis in the post-genomic era. Adv Bot Res 41:63–106

    Article  CAS  Google Scholar 

  • Hanley-Bowdoin L, Settlage SB, Orozco BM, Nagar S, Robertson D (1999) Geminiviruses—models for plant DNA replication, transcription and cell cycle regulation. Crit Rev Plant Sci 18:71–106

    Article  CAS  Google Scholar 

  • Hoffman PG, Lego MC, Galetto NG (1983) Separation and quantitation of red pepper mayor heat principles by reverse-phase high-pressure liquid chromatography. J Agric Food Chem 31:1326–1330

    Article  CAS  Google Scholar 

  • Hoffmann L, Besseau S, Geoffroy P, Ritzenthaler C, Meyer D, Lapierre C, Pollet B, Legrand M (2004) Silencing of hydroxycinnamoyl-coenzyme A shikimate/quinate hydroxycinnamoyltransferase affects phenylpropanoid biosynthesis. Plant Cell 16:1446–1465

    Article  PubMed  CAS  Google Scholar 

  • Humphreys JM, Chapple C (2002) Rewriting the lignin roadmap. Curr Opin Plant Sci 5:224–229

    Article  CAS  Google Scholar 

  • Hutvagner G, Mlynarova L, Nap J (2000) Detailed characterization of the posttranscriptional gene-silencing-related small RNA in a GUS gene-silenced tobacco. RNA 6:1445–145

    Article  PubMed  CAS  Google Scholar 

  • Ibrahim RK, Bruneau A, Bantignies B (1998) Plant O-methyltransferases: molecular analysis, common signature and classification. Plant Mol Biol 36:1–10

    Article  PubMed  CAS  Google Scholar 

  • Jouanin L, Goujon T, de Nadai V, Martin MT, Mila I, Vallet C, Pollet B, Yoshinaga A, Chabbert B, Petit-Conil M, Lapierre C (2000) Lignification in transgenic poplars with extremely reduced caffeic acid O-methyltransferase activity. Plant Physiol 123:1363–1373

    Article  PubMed  CAS  Google Scholar 

  • Kaneda T (1991) Iso- and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance. Microbiol Rev 55:288–302

    PubMed  CAS  Google Scholar 

  • Kim M, Kim S, Kim S, Kim BD (2001) Isolation of cDNA clones differentially accumulated in the placenta of pungent pepper by suppression subtractive hybridization. Mol Cells 11:213–219

    PubMed  CAS  Google Scholar 

  • Kjemtrup S, Sampson KS, Peele CG, Nguyen LV, Conkling MA, Thompson WF, Robertson D (1998) Gene silencing from plant DNA carried by a geminivirus. Plant J 14:91–100

    Article  PubMed  CAS  Google Scholar 

  • Leete E, Louden M (1968) Biosynthesis of capsaicin and dihydrocapsaicin in Capsicum frutescens. J Am Chem Soc 90:6837–6841

    Article  PubMed  CAS  Google Scholar 

  • Méndez-Lozano J, Torres-Pacheco I, Fauquet CM, Rivera-Bustamante RF (2003) Interactions between geminiviruses in a naturally occurring mixture: Pepper huasteco virus and Pepper golden mosaic virus. Phytopathology 93:270–277

    Article  Google Scholar 

  • Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–289

    Article  PubMed  CAS  Google Scholar 

  • Ni WT, Paiva NL, Dixon RA (1994) Reduced lignin in transgenic plants containing a caffeic acid O-methyltransferase antisense gene. Transgenic Res 3:120–126

    Article  CAS  Google Scholar 

  • Ochoa-Alejo N, Gómez-Peralta JE (1993) Activity of enzymes involved in capsaicin biosynthesis in callus tissue and fruits of chili pepper (Capsicum annuum L.). J Plant Physiol 141:147–152

    CAS  Google Scholar 

  • Ochoa-Alejo N, Ramírez-Malagón R (2001) Invited review: in vitro chili pepper biotechnology. In Vitro Cell Dev Biol Plant 37:701–729

    Article  CAS  Google Scholar 

  • Packter NM, Stumpf PK (1975) Fat metabolism in higher plants: production of short- and medium-chain acyl–acyl carrier protein by spinach stroma preparations treated with cerulenin. Biochim Biophys Acta 409:274–282

    PubMed  CAS  Google Scholar 

  • Prasad BCN, Kumar V, Gururaj HB, Parimalan R, Giridhar P, Ravishankar GA (2006) Characterization of capsaicin synthase and identification of its gene (csy1) for pungency factor capsaicin in pepper (Capsicum sp.). Proc Natl Acad Sci USA 103:13315–13320

    Article  PubMed  CAS  Google Scholar 

  • Peele C, Jordan CV, Muangsan N, Turnage M, Egelkrout E, Eagle P, Hanley-Bowdoin L, Robertson D (2001) Silencing of a meristematic gene using geminivirus-derived vectors. Plant J Cell Mol Biol 27:357–366

    CAS  Google Scholar 

  • Ratcliff FG, MacFarlane SA, Baulcombe DC (1999) Gene silencing without DNA: RNA-mediated cross-protection between viruses. Plant Cell 11:1207–1215

    Article  PubMed  CAS  Google Scholar 

  • Salgado-Garciglia R, Ochoa-Alejo N (1990) Increased capsaicin content in PFP-resistant cells of chili pepper (Capsicum annuum L.). Plant Cell Rep 8:617–620

    Article  CAS  Google Scholar 

  • Schneider F, Cassagne C (1995) Specific inhibition of plant fatty acid elongation by a long-chain cerulenin analogue. Eur J Biochem 228:704–709

    Article  PubMed  CAS  Google Scholar 

  • Shimakata T, Stumpf PK (1982) Isolation and function of spinach leaf β-ketoacyl-[acyl-carrier-protein] synthases. Proc Natl Acad Sci USA 79:5808–5812

    Article  PubMed  CAS  Google Scholar 

  • Stewart C, Kang BC, Liu K, Mazourek M, Moore SL, Yoo EY, Kim BD, Paran I, Jahn MM (2005) The Pun1 gene for pungency in pepper encodes a putative acyltransferase. Plant J 42:675–688

    Article  PubMed  CAS  Google Scholar 

  • Stewart C, Mazourek M, Stellari GM, O’Connell M, Jahn M (2007) Genetic control of pungency in C. chinense via the Pun1 locus. J Exp Bot 58:979–991

    Article  PubMed  CAS  Google Scholar 

  • Sukrasno N, Yeoman MM (1993) Phenylpropanoid metabolism during growth and development of Capsicum frutescens fruits. Phytochemistry 32:839–844

    Article  CAS  Google Scholar 

  • Suzuki T, Kawada T, Iwai K (1981) Biosynthesis of acyl moieties of capsaicin and its analogues from valine and leucine in Capsicum fruits. Plant Cell Physiol 22:23–32

    CAS  Google Scholar 

  • Turnage MA, Muangsan N, Peele CG, Robertson D (2002) Geminivirus-based vectors for gene silencing in Arabidopsis. Plant J Cell Mol Biol 30:107–114

    CAS  Google Scholar 

  • Wissenbach M (1994) New members of the barley Kas gene family encoding β-ketoacyl-acyl carrier protein synthases. Plant Physiol 106:1711–1712

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Mary A. O’Connell, New Mexico State University, for kindly supplying the cDNA clones used in this work, and Dr. L. Herrera-Estrella, Cinvestav Campus Guanajuato, for the critical review of the manuscript. We are also grateful to Dr. Hector G. Núñez-Palenius, Cinvestav Campus Guanajuato, for assistance in statistical data analysis. We acknowledge CONACYT and CONCYTEG (Mexico) for the fellowship support to M.R. Abraham-Juárez.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neftalí Ochoa-Alejo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

del Rosario Abraham-Juárez, M., del Carmen Rocha-Granados, M., López, M.G. et al. Virus-induced silencing of Comt, pAmt and Kas genes results in a reduction of capsaicinoid accumulation in chili pepper fruits. Planta 227, 681–695 (2008). https://doi.org/10.1007/s00425-007-0651-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-007-0651-7

Keywords

Navigation