Skip to main content
Log in

Cloning and molecular characterisation of a potato SERK gene transcriptionally induced during initiation of somatic embryogenesis

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Somatic embryogenesis offers great potential in plant propagation, long-term germplasm conservation, and as a suitable model system for deciphering early events during embryogenesis. The up-regulation and ectopic expression of a SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK) gene has been shown to mark and enhance embryogenic competence in somatic cells of model plant species. We have cloned and characterised a SERK gene (StSERK1) from potato (Solanum tuberosum L.), an important crop plant. Sequence analysis of StSERK1 revealed high levels of similarity to other plant SERKs, as well as a conserved intron/exon structure which is unique to members of the SERK family. Furthermore, StSERK clustered most closely with SERK gene family members such as MtSERK1, CuSERK1, AtSERK1, and DcSERK, implicated in evoking somatic embryogenesis. Monitoring of SERK expression during progression of potato somatic embryogenesis revealed increased StSERK expression during the induction phase. Subsequently, during the embryo transition phases, StSERK expression was unchanged and did not vary among embryo-forming and inhibitory conditions. However, in isolated somatic embryos StSERK expression was again up-regulated. In other plant parts (leaves, true potato seeds, microtubers and flower buds), StSERK showed different levels of expression. Expression analysis suggests that the isolated StSERK could be a functional SERK orthologue. The possible role of SERK as a marker of pluripotency, rather than embryogenesis alone, is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

2,4-D:

2,4 Dichlorophenoxyacetic acid

BAC:

Bacterial artificial chromosome

EST:

Expressed sequence tag

INS:

Internodal segment

LRR:

Leucine-rich repeat

ORF:

Open reading frame

RLK:

Receptor-like kinase

RT-PCR:

Reverse transcription polymerase chain reaction

SE:

Somatic embryogenesis

SERK:

Somatic embryogenesis receptor-like kinase

SNP:

Single nucleotide polymorphism

SPP:

Serine-proline-proline

ZIP:

Leucine zipper

References

  • Albertini E, Marconi G, Reale L, Barcaccia G, Porceddu A, Ferranti F, Falcinelli M (2005) SERK and APOSTART. Candidate genes for apomixis in Poa pratensis. Plant Physiol 138:2185–2199

    Article  PubMed  CAS  Google Scholar 

  • Albrecht C, Russinova E, Hecht V, Baaijens E, de Vries S (2005) The Arabidopsis thaliana somatic embryogenesis receptor-like kinases 1 and 2 control male sporogenesis. Plant Cell 17:3337–3349

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Thomas LM, Alejandro AS, Jinghui Z, Zheng Z, Webb M, David JL (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Baudino S, Hansen S, Brettschneider R, Hecht VRG, Dresselhaus T, Lorz H, Dumas C, Rogowsky PM (2001) Molecular characterisation of two novel maize LRR receptor-like kinases, which belong to the SERK gene family. Planta 213:1–10

    Article  PubMed  CAS  Google Scholar 

  • Bryan GJ, McLean K, Bradshaw JE, De Jong WS, Phillips M, Castelli L, Waugh R (2002) Mapping QTLs for resistance to the cyst nematode Globodera pallida derived from the wild potato species Solanum vernei. Theor Appl Genet 105:68–77

    Article  PubMed  CAS  Google Scholar 

  • Carman JG (1990) Embryogenic cells in plant tissue cultures—occurrence and behavior. In vitro Cell Dev Biol Plant 26:746–753

    Google Scholar 

  • Colcombet J, Boisson-Dernier A, Ros-Palau R, Vera CE, Schroeder JI (2005) Arabidopsis somatic embryogenesis receptor kinases1 and 2 are essential for tapetum development and microspore maturation. Plant Cell 17:3350–3361

    Article  PubMed  CAS  Google Scholar 

  • Fiegert AK, Mix-Wagner G, Vorlop KD (2000) Regeneration of Solanum tuberosum L. cv. Tomensa: induction of somatic embryogenesis in liquid culture for the production of “artificial seed”. Landbauforsch Volk 50:199–202

    CAS  Google Scholar 

  • Hanks SK, Quinn AM, Hunter T (1988) The protein-kinase family—conserved features and deduced phylogeny of the catalytic domains. Science 241:42–52

    Article  PubMed  CAS  Google Scholar 

  • Hecht V, Vielle-Calzada JP, Hartog MV, Schmidt EDL, Boutilier K, Grossniklaus U, de Vries SC (2001) The Arabidopsis somatic embryogenesis receptor kinase 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol 128:314 correction 2002, Plant Physiol 128:314

    Google Scholar 

  • Hu H, Xiong L, Yang Y (2005) Rice SERK1 gene positively regulates somatic embryogenesis of cultured cell and host defense response against fungal infection. Planta 222:107–117

    Article  PubMed  CAS  Google Scholar 

  • Jimenez VM (2001) Regulation of in vitro somatic embryogenesis with emphasis on the role of endogenous hormones. Revista Brasileira de Fisiologia Vegetal 13:196–223

    Article  Google Scholar 

  • Kobe B, Deisenhofer J (1994) The leucine rich repeat—a versatile binding motif. Trends Biochem Sci 19:415–421

    Article  PubMed  CAS  Google Scholar 

  • Landschulz WH, Johnson PF, Mcknight SL (1988) The leucine zipper—a hypothetical structure common to a new class of DNA binding proteins. Science 240:1759–1764

    Article  PubMed  CAS  Google Scholar 

  • Miki B, McHugh S (2004) Selectable marker genes in transgenic plants: applications, alternatives and biosafety. J Biotechnol 107:193–232

    Article  PubMed  CAS  Google Scholar 

  • Mordhorst AP, Toonen MAJ, de Vries SC (1997) Plant embryogenesis. Crit Rev Plant Sci 16:535–576

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nam KH, Li JM (2002) BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling. Cell 110:203–212

    Article  PubMed  CAS  Google Scholar 

  • Nolan KE, Irwanto RR, Rose RJ (2003) Auxin up-regulates MtSERK1 expression in both Medicago truncatula root-forming and embryogenic cultures. Plant Physiol 133:218–230

    Article  PubMed  CAS  Google Scholar 

  • Raemakers CJJM, Jacobsen E, Visser RGF (1995) Secondary somatic embryogenesis and applications in plant breeding. Euphytica 81:93–107

    Article  Google Scholar 

  • Ramulu KS, Sharma VK, Naumova TN, Dijkhuis P, Campagne MMV (1999) Apomixis for crop improvement. Protoplasma 208:196–205

    Article  Google Scholar 

  • Reinert J (1958) Morphogenese und Ihre Kontrolle An Gewebekulturen aus Carotten. Naturwissenschaften 45:344–345

    Article  CAS  Google Scholar 

  • Santos MD, Romano E, Yotoko KSC, Tinoco MLP, Dias BBA, Aragao FJL (2005) Characterisation of the cacao somatic embryogenesis receptor-like kinase (SERK) gene expressed during somatic embryogenesis. Plant Sci 168:723–729

    Article  CAS  Google Scholar 

  • Schmidt EDL, Guzzo F, Toonen MAJ, de Vries SC (1997) A leucine rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development 124:2049–2062

    PubMed  CAS  Google Scholar 

  • Seabrook JEA, Douglass LK (2001) Somatic embryogenesis on various potato tissues from a range of genotypes and ploidy levels. Plant Cell Rep 20:175–182

    Article  CAS  Google Scholar 

  • Shah H, Gadella TWJ, van Erp H, Hecht V, de Vries SC (2001a) Subcellular localization and oligomerization of the Arabidopsis thaliana somatic embryogenesis receptor kinase 1 protein. J Mol Biol 309:641–655

    Article  PubMed  CAS  Google Scholar 

  • Shah K, Schmidt EDL, Vlak JM, de Vries SC (2001b) Expression of the Daucus carota somatic embryogenesis receptor kinase (DcSERK) protein in insect cells. Biochimie 83:415–421

    Article  PubMed  CAS  Google Scholar 

  • Shah K, Vervoort J, de Vries SC (2001c) Role of threonines in the Arabidopsis thaliana somatic embryogenesis receptor kinase 1 activation loop in phosphorylation. J Biol Chem 276:41263–41269

    Article  PubMed  CAS  Google Scholar 

  • Shah K, Russinova E, Gadella TWJ, Willemse J, de Vries SC (2002) The Arabidopsis kinase-associated protein phosphatase controls internalization of the somatic embryogenesis receptor kinase 1. Gene Dev 16:1707–1720

    Article  PubMed  CAS  Google Scholar 

  • Sharma SK (2006) The development of an efficient somatic embryogenesis system for the production of synthetic seed in potato, Ph D thesis. University of Dundee, Dundee

  • Sharma SK, Millam S (2004) Somatic embryogenesis in Solanum tuberosum L.: a histological examination of key developmental stages. Plant Cell Rep 23:115–119

    PubMed  CAS  Google Scholar 

  • Shimada T, Hirabayashi T, Endo T, Fujii H, Kita M, Omura M (2005) Isolation and characterization of the somatic embryogenesis receptor-like kinase gene homologue (CitSERK1) from Citrus unshui Marc. Sci Hortic 103:233–238

    Article  CAS  Google Scholar 

  • Somleva MN, Schmidt EDL, de Vries SC (2000) Embryogenic cells in Dactylis glomerata L. (Poaceae) explants identified by cell tracking and by SERK expression. Plant Cell Rep 19:718–726

    Article  CAS  Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    Article  PubMed  CAS  Google Scholar 

  • Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package—Joinmap. Plant J 3:739–744

    Article  CAS  Google Scholar 

  • Steward FC, Mapes MO, Mears K (1958) Growth and organized development of cultured cells.II. Organization in cultures grown from freely suspended cells. Am J Bot 45:705–708

    Article  Google Scholar 

  • Stone JM, Walker JC (1995) Plant protein kinase families and signal transduction. Plant Physiol 108:451–457

    Article  PubMed  CAS  Google Scholar 

  • Taylor RL (1967) The foliar embryos of Malaxis paludosa. Can J Bot 45:1553–1556

    Article  Google Scholar 

  • Thomas C, Meyer D, Himber C, Steinmetz A (2004) Spatial expression of a sunflower SERK gene during induction of somatic embryogenesis and shoot organogenesis. Plant Physiol Biochem 42:35–42

    Article  PubMed  CAS  Google Scholar 

  • Torii KU, Mitsukawa N, Oosumi T, Matsuura Y, Yokoyama R, Whittier RF, Komeda Y (1996) The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine-rich repeats. Plant Cell 8:735–746

    Article  PubMed  CAS  Google Scholar 

  • Tornero P, Mayda E, Gomez MD, Canas L, Conejero V, Vera P (1996) Characterization of LRP, a leucine-rich repeat (LRR) protein from tomato plants that is processed during pathogenesis. Plant J 10:315–330

    Article  PubMed  CAS  Google Scholar 

  • Voorrips RE (2000) MAPCHART v 1.43: Windows software for the graphical presentation of linkage maps and QTLs. Plant Research International, Wageningen

    Google Scholar 

  • Walker JC (1994) Structure and function of the receptor-like protein kinases of higher plants. Plant Mol Biol 26:1599–1609

    Article  PubMed  CAS  Google Scholar 

  • Yarbrough JA (1932) Anatomical and developmental studies of the foliar embryos of Bryophyllum calcynum. Am J Bot 19:443–453

    Article  Google Scholar 

Download references

Acknowledgements

S.K.S. is grateful to the Government of India and the Commonwealth Scholarship Commission, United Kingdom for his doctoral Commonwealth Scholarship Award. The authors are thankful to Drs Mark A. Taylor and Pete E. Hedley (SCRI) for critical reading of the manuscript. SCRI is supported by grant-in-aid from the Scottish Executive Environment & Rural Affairs Department (SEERAD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeev Kumar Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, S.K., Millam, S., Hein, I. et al. Cloning and molecular characterisation of a potato SERK gene transcriptionally induced during initiation of somatic embryogenesis. Planta 228, 319–330 (2008). https://doi.org/10.1007/s00425-008-0739-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-008-0739-8

Keywords

Navigation