Skip to main content
Log in

Expression analysis of the auxin efflux carrier family in tomato fruit development

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Auxin transport network, which is important in the integration of plant developmental signals, depends on differential expression of the auxin efflux carrier PIN gene family. We cloned three tomato PIN (referred as SlPIN) cDNAs and examined their expression patterns in fruit and other organs. The expression of SlPIN1 and SlPIN2 was highest in very young fruit immediately after anthesis, whereas the expression of SlPIN3 was low at this same stage of fruit development. SlPIN2::GUS was expressed in ovules at anthesis and in young developing seeds at 4 days after anthesis, while SlPIN1::GUS was expressed in whole fruit. The DR5::GUS auxin-responsive reporter gene was expressed in the fruit and peduncle at anthesis and was higher in the peduncle 4 days after anthesis. These studies suggest that auxin is likely transported from young seeds by SlPIN1 and SlPIN2 and accumulated in peduncles where SlPIN gene expression is low in tomato. The possible role of SlPINs in fruit set was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

GUS:

β-Glucuronidase

References

  • Amemiya T, Kanayama Y, Yamaki S, Yamada K, Shiratake K (2005) Fruit-specific V-ATPase suppression in antisense-transgenic tomato reduces fruit growth and seed formation. Planta 223:1272–1280

    Article  PubMed  Google Scholar 

  • An G (1986) Development of plant promoter expression vectors and their use for analysis of differential activity of nopaline synthase promoter in transformed tobacco cells. Plant Physiol 81:86–91

    Article  CAS  PubMed  Google Scholar 

  • Benková E, Michniewicz M, Sauer M, Teichmann T, Seifertová D, Jürgens G, Friml J (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591–602

    Article  PubMed  Google Scholar 

  • Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433:39–44

    Article  CAS  PubMed  Google Scholar 

  • Carraro N, Forestan C, Canova S, Traas J, Varotto S (2006) ZmPIN1a and ZmPIN1b encode two novel putative candidates for polar auxin transport and plant architecture determination of maize. Plant Physiol 142:254–264

    Article  CAS  PubMed  Google Scholar 

  • Casimiro I, Marchant A, Bhalerao R, Beeckman T, Dhooge S, Swarup R, Graham N, Inze D, Sandberg G, Casero P, Bennett M (2001) Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell 13:843–852

    Article  CAS  PubMed  Google Scholar 

  • Deguchi M, Bennett AB, Yamaki S, Yamada K, Kanahama K, Kanayama Y (2006) An engineered sorbitol cycle alters sugar composition, not growth, in transformed tobacco. Plant Cell Environ 29:1980–1988

    Article  CAS  PubMed  Google Scholar 

  • Feraru E, Friml J (2008) PIN polar targeting. Plant Physiol 147:1553–1559

    Article  CAS  PubMed  Google Scholar 

  • Friml J, Benková E, Blilou I, Wisniewska J, Hamann T, Ljung K, Woody S, Sandberg G, Scheres B, Jürgens G, Palme K (2002) AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis. Cell 108:661–673

    Article  CAS  PubMed  Google Scholar 

  • Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T, Offringa R, Jürgens G (2003) Efflux-dependent auxin gradients establish the apical basal axis of Arabidopsis. Nature 426:147–153

    Article  CAS  PubMed  Google Scholar 

  • Fujii N, Hotta T, Kim DH, Kamada M, Miyazawa Y, Kim KM, Takahashi H (2005) Isolation of cucumber auxin efflux carrier cDNAs and expression of corresponding mRNA in cucumber seedlings. Space Util Res 21:294–297

    Google Scholar 

  • Gälweiler L, Guan C, Müller A, Wisman E, Mendgen K, Yephremov A, Palme K (1998) Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282:2226–2230

    Article  PubMed  Google Scholar 

  • Gillaspy G, Ben-David H, Gruissem W (1993) Fruits: a developmental perspective. Plant Cell 5:1439–1451

    Article  PubMed  Google Scholar 

  • Hamamoto H, Shishido Y, Furuya S, Yasuda K (1998) Growth and development of tomato fruit as affected by 2,3,5-triiodobenzonic acid (TIBA) applied to the peduncle. J Japan Soc Hort Sci 67:210–212

    Google Scholar 

  • Hong SB, Sexton R, Tucker ML (2000) Analysis of gene promoters for two tomato polygalacturonases expressed in abscission zones and the stigma. Plant Physiol 123:869–881

    Article  CAS  PubMed  Google Scholar 

  • Jefferson R, Kavanagh T, Bevan M (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene marker in higher plants. EMBO J 6:3901–3907

    CAS  PubMed  Google Scholar 

  • Jones B, Frasse P, Olmos E, Zegzouti H, Li ZG, Latché A, Pech JC, Bouzayen M (2002) Down-regulation of DR12, an auxin-response-factor homolog, in the tomato results in a pleiotropic phenotype including dark green and blotchy ripening fruit. Plant J 32:603–613

    Article  CAS  PubMed  Google Scholar 

  • Kanayama K, Dai N, Granot D, Petreikov M, Schaffer A, Bennett AB (1997) Divergent fructokinase genes are differentially expressed in tomato. Plant Physiol 113:1379–1384

    Article  CAS  PubMed  Google Scholar 

  • Lemaire-Chamley M, Petit J, Garcia V, Just D, Baldet P, Germain V, Fagard M, Mouassite M, Cheniclet C, Rothan C (2005) Changes in transcriptional profiles are associated with early fruit tissue specialization in tomato. Plant Physiol 139:750–769

    Article  CAS  PubMed  Google Scholar 

  • Odanaka S, Bennett AB, Kanayama Y (2002) Distinct physiological roles of fructokinase isozymes revealed by gene-specific suppression of Frk1 and Frk2 expression in tomato. Plant Physiol 129:1119–1126

    Article  CAS  PubMed  Google Scholar 

  • Olimpieri I, Siligato F, Caccia R, Soressi GP, Mazzucato A, Mariotti L, Ceccarelli N (2007) Tomato fruit set driven by pollination or by the parthenocarpic fruit allele are mediated by transcriptionally regulated gibberellin biosynthesis. Planta 226:877–888

    Article  CAS  PubMed  Google Scholar 

  • Oliveros-Valenzuela M, Reyes D, Sánchez-Bravo J, Acosta M, Nicolás C (2007) The expression of genes coding for auxin carriers in different tissues and along the organ can explain variations in auxin transport and the growth pattern in etiolated lupin hypocotyls. Planta 227:133–142

    Article  CAS  PubMed  Google Scholar 

  • Parry G, Marchant A, May S, Swarup R, Swarup K, James N, Graham N, Allen T, Martucci T, Yemm A, Napier R, Manning K, King G, Bennett M (2001) Quick on the uptake: characterization of a family of plant auxin influx carriers. J Plant Growth Regul 20:217–225

    Article  CAS  Google Scholar 

  • Reinhardt D, Pesce ER, Stieger P, Mandel T, Baltensperger K, Bennett M, Traas J, Friml J, Kuhlemeier C (2003) Regulation of phyllotaxis by polar auxin transport. Nature 426:255–260

    Article  CAS  PubMed  Google Scholar 

  • Serrani JC, Fos F, Atares A, García-Martínez JL (2007a) Effect of gibberellin and auxin on parthenocarpic fruit growth induction in the cv Micro-Tom of tomato. J Plant Growth Regul 26:211–221

    Article  CAS  Google Scholar 

  • Serrani JC, Sanjuán R, Ruiz-Rivero O, Fos M, García-Martínez JL (2007b) Gibberellin regulation of fruit-set and growth in tomato. Plant Physiol 145:246–257

    Article  CAS  PubMed  Google Scholar 

  • Sun HJ, Uchii S, Watanabe S, Ezura H (2006) A highly efficient transformation protocol for Micro-Tom, a model cultivar for tomato functional genomics. Plant Cell Physiol 47:426–431

    Article  CAS  PubMed  Google Scholar 

  • Tucker ML, Whitelaw CA, Lyssenko NN, Nath P (2002) Functional analysis of regulatory elements in the gene promoter for an abscission-specific cellulase from bean and isolation, expression, and binding affinity of three TGA-type basic leucine zipper transcription factors. Plant Physiol 130:1487–1496

    Article  CAS  PubMed  Google Scholar 

  • Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ (1997) Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9:1963–1971

    Article  CAS  PubMed  Google Scholar 

  • Vanneste S, Friml J (2009) Auxin: a trigger for change in plant development. Cell 136:1005–1016

    Article  CAS  PubMed  Google Scholar 

  • Vernoux T, Kronenberger J, Grandjean O, Laufs P, Traas J (2000) PIN-FORMED 1 regulates cell fate at the periphery of the shoot apical meristem. Development 127:5157–5165

    CAS  PubMed  Google Scholar 

  • Vieten A, Vanneste S, Wisniewska J, Benková E, Benjamins R, Beeckman T, Luschnig C, Friml J (2005) Functional redundancy of PIN proteins is accompanied by auxin-dependent cross-regulation of PIN expression. Development 132:4521–4531

    Article  CAS  PubMed  Google Scholar 

  • Vogel G (2006) Auxin begins to give up its secrets. Science 313:1230–1231

    Article  CAS  PubMed  Google Scholar 

  • Vriezen WH, Feron R, Maretto F, Keijman J, Mariani C (2008) Changes in tomato ovary transcriptome demonstrate complex hormonal regulation of fruit set. New Phytol 177:60–76

    CAS  PubMed  Google Scholar 

  • Wang H, Jones B, Li Z, Frasse P, Delalande C, Regad F, Chaabouni S, Latché A, Pech JC, Bouzayena M (2005) The tomato Aux/IAA transcription factor IAA9 is involved in fruit development and leaf morphogenesis. Plant Cell 17:2676–2692

    Article  CAS  PubMed  Google Scholar 

  • Xu M, Zhu L, Shou H, Wu P (2005) A PIN1 family gene, OsPIN1, involved in auxin-dependent adventitious root emergence and tillering in rice. Plant Cell Physiol 46:1674–1681

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshinori Kanayama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishio, S., Moriguchi, R., Ikeda, H. et al. Expression analysis of the auxin efflux carrier family in tomato fruit development. Planta 232, 755–764 (2010). https://doi.org/10.1007/s00425-010-1211-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-010-1211-0

Keywords

Navigation