Skip to main content

Advertisement

Log in

Microarray analysis of Arabidopsis plants in response to allelochemical l-DOPA

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Velvetbean (Mucuna pruriens) plants impede the growth of neighboring plants. One compound, 3-(3′,4′-dihydroxyphenyl)-l-alanine (l-DOPA), is responsible for the allelopathic capacity of velvetbean. This compound is an active allelochemical that decreases root growth of several plant species. In mammals, l-DOPA is a well-known therapeutic agent for the symptomatic relief of Parkinson’s disease. However, its mode of action in plants is still not well understood. To address such issues, gene expression in Arabidopsis thaliana plants, which had been exposed to l-DOPA, was analyzed using DNA microarrays. After 6 h of l-DOPA exposure, the expression of 110 genes was significantly upregulated, and the expression of 69 genes was significantly downregulated. These induced genes can be divided into different functional categories, mainly on the basis of subcellular localization, metabolism, and proteins with a binding function or cofactor requirement. Based on these results, we suggest that l-DOPA acts by two mechanisms: it influences amino acid metabolism and deregulates metal homeostasis, especially that of iron, which is required for the fundamental biological processes of all organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ASP2:

Aspartate aminotransferase

bHLH:

Basic helix-loop-helix

EMB2454:

Embryo defective, zinc ion binding

FER:

Ferritin

FRO:

Ferric reduction oxidase

l-DOPA:

3-(3′,4′-Dihydroxyphenyl)-l-alanine

NADP+ :

Nicotinamide adenine dinucleotide phosphate

NRAMP:

Natural resistance-associated macrophage protein

OPT:

Oligopeptide transporter

PAL:

Phenylalanine ammonia-lyase

POD:

Peroxidase

ZIF:

Zinc induced facilitator

References

  • Baerson SR, Sanchez-Moreiras A, Pedrol-Bonjoch N, Schulz M, Kagan IA, Agarwal AK, Reigosa MJ, Duke SO (2005) Detoxification and transcriptome response in Arabidopsis seedlings exposed to the allelochemical benzoxazolin-2(3H)-one. J Biol Chem 280:21867–21881

    Article  CAS  PubMed  Google Scholar 

  • Becher M, Talke IN, Krall L, Kramer U (2004) Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. Plant J 37:251–268

    Article  CAS  PubMed  Google Scholar 

  • Bell EA, Janzen DH (1971) Medical and ecological considerations of l-DOPA and 5-HTP in seeds. Nature 229:136–137

    Article  CAS  PubMed  Google Scholar 

  • Belz RG, Velini ED, Duke SO (2007) Dose/response relationships in allelopathy research. In: Fujii Y, Hiradate S (eds) Allelopathy new concepts and methodology. Science Publishers, USA, pp 3–29

    Google Scholar 

  • Boyes DC, Zayed AM, Ascenzi R, McCaskill AJ, Hoffman NE, Davis KR, Gorlach J (2001) Growth stage-based phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants. Plant Cell 13:1499–1510

    Article  CAS  PubMed  Google Scholar 

  • Buckhout TJ, Yang TJW, Schmidt W (2009) Early iron-deficiency-induced transcriptional changes in Arabidopsis roots as revealed by microarray analyses. BMC Genomics 10:147–163

    Article  PubMed  Google Scholar 

  • Damodaran M, Ramaswamy R (1937) Isolation of l-3, 4-dihydroxyphenylalanine from the seeds of Mucuna pruriens. Biochem J 31:2149–2152

    CAS  PubMed  Google Scholar 

  • Dayan FE, Duke SO (2009) Biological activity of allelochemicals. In: Osbourn AE, Lanzotti V (eds) Plant derived natural products. Synthesis, functions, and application. Springer, NY, pp 361–384

    Chapter  Google Scholar 

  • Dayan FE, Romagni JG, Duke SO (2000) Investigating the mode of action of natural phytotoxins. J Chem Ecol 26:2079–2094

    Article  CAS  Google Scholar 

  • Fujii Y (1999) Allelopathy of velvetbean: determination and identification of l-DOPA as a candidate of allelopathic substances. In: Cutler HG, Cutler SJ (eds) Biologically active natural products: agrochemicals. CRC Press, Boca Raton, pp 33–47

    Google Scholar 

  • Fujii Y (2003) Allelopathy in the natural and agricultural ecosystems and isolation of potent allelochemicals from Velvet bean (Mucuna pruriens) and Hairy vetch (Vicia villosa). Biol Sci Space 17:6–13

    Article  PubMed  Google Scholar 

  • Fujii Y, Shibuya T, Yasuda T (1991) l-3, 4-dihydroxyphenylalanine as an allelochemical candidate from Mucuna pruriens (L.) DC. Var utilis. Agric Biol Chem 55:617–618

    CAS  Google Scholar 

  • Furubayashi A, Hiradate S, Fujii Y (2005) Adsorption and transformation reactions of l-DOPA in soils. Soil Sci Plant Nutr 51:819–825

    Article  CAS  Google Scholar 

  • Furubayashi A, Hiradate S, Fujii Y (2007) Role of catechol structure in the adsorption and transformation reactions of l-DOPA in soils. J Chem Ecol 33:239–258

    Article  CAS  PubMed  Google Scholar 

  • Golisz A, Sugano M, Fujii Y (2008) Microarray expression profiling of Arabidopsis thaliana L. in response to allelochemicals identified in buckwheat. J Exp Bot 59:3099–3109

    Article  CAS  PubMed  Google Scholar 

  • Grotz N, Guerinot ML (2006) Molecular aspects of Cu, Fe and Zn homeostasis in plants. Biochim Biophys Acta 1763:595–608

    Article  CAS  PubMed  Google Scholar 

  • Hachinohe M, Matsumoto H (2005) Involvement of reactive oxygen species generated from melanin synthesis pathway in phytotoxicity of l-DOPA. J Chem Ecol 31:237–246

    Article  CAS  PubMed  Google Scholar 

  • Hachinohe M, Matsumoto H (2007) Mechanism of selective phytotoxicity of l-3, 4-dihydroxyphenylalanine (l-DOPA) in barnyardgrass and lettuce. J Chem Ecol 33:1919–1926

    Article  CAS  PubMed  Google Scholar 

  • Hachinohe M, Sunohara Y, Matsumoto H (2004) Absorption, translocation and metabolism of l-DOPA in barnyardgrass and lettuce: their involvement in species-selective phytotoxic action. Plant Growth Regul 43:237–243

    Article  CAS  Google Scholar 

  • Hahlbrock K, Scheel D (1989) Physiology and molecular biology of phenylpropanoid metabolism. Annu Rev Plant Physiol Plant Mol Biol 40:347–369

    Article  CAS  Google Scholar 

  • Hintze KJ, Theil EC (2006) Cellular regulation and molecular interactions of the ferritins. Cell Mol Life Sci 63:591–600

    Article  CAS  PubMed  Google Scholar 

  • Hiradate S, Furubayashi A, Fujii Y (2005) Changes in chemical structure and biological activity of l-DOPA as influenced by an Andosol and its components. Soil Sci Plant Nutr 50:665–675

    Google Scholar 

  • Lanquar V, Lielievre F, Bolte S, Hames C, Alcon C, Neumann D, Vansuyt G, Curie C, Schroder A, Kramer U, Barbier-Brygoo H, Thomine S (2005) Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron. EMBO J 24:4041–4051

    Article  CAS  PubMed  Google Scholar 

  • Lanquar V, Ramos MS, Lelievre F, Barbier-Brygoo H, Krieger-Liszkay A, Kramer U, Thomine S (2010) Export of vacuolar manganese by AtNRAMP3 and AtNRAMP4 is required for optimal photosynthesis and growth under manganese deficiency. Plant Physiol 152:1986–1999

    Article  CAS  PubMed  Google Scholar 

  • Mercuri V, Bernardi G (2005) The magic of l-DOPA: why is it the gold standard Parkinson’s disease therapy? Trends Pharm Sci 26:341–344

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee I, Campbell NH, Ash JS, Connolly EL (2006) Expression profiling of the Arabidopsis ferric chelate reductase (FRO) gene family reveals differential regulation by iron and copper. Planta 223:1178–1190

    Article  CAS  PubMed  Google Scholar 

  • Nakajima N, Hiradate S, Fujii Y (1999) Characteristics of growth inhibitory effect of l-3, 4-dihydroxyphenylalanine (l-DOPA) on cucumber seedlings (in Japanese with English summary). J Weed Sci Tech 44:132–138

    CAS  Google Scholar 

  • Nishihara E, Parvez MM, Araya H, Fujii Y (2004) Germination growth response of different plant species to the allelochemical l-3, 4-dihyroxyphenylalanine (l-DOPA). Plant Growth Regul 42:181–189

    Article  CAS  Google Scholar 

  • Pattison DI, Dean RT, Davies MJ (2002) Oxidation of DNA, proteins and lipids by DOPA, protein-bound DOPA, and related catecho (amine)s. Toxicology 177:23–37

    Article  CAS  PubMed  Google Scholar 

  • Petit JM, Briat JF, Lobreaux S (2001a) Structure and differential expression of the four members of the Arabidopsis thaliana ferritin gene family. Biochem J 359:575–582

    Article  CAS  PubMed  Google Scholar 

  • Petit JM, van Wuytswinkel O, Briat JF, Lobreaux S (2001b) Characterization of an iron-dependent regulatory sequence involved in the transcriptional control of AtFer1 and ZmFer1 plant ferritin genes by iron. J Biol Chem 276:5584–5590

    Article  CAS  PubMed  Google Scholar 

  • Premchand (1981) Presence of feeding deterrent in velvetbean (Mucuna cochinchinensis). Indian J Entomol 43:217–219

  • Puig S, Andres-Colas N, Garcia-molina A, Penarrubia L (2007) Copper and iron homeostasis in Arabidopsis: responses to metal deficiencies, interactions and biotechnological applications. Plant Cell Environ 30:271–290

    Article  CAS  PubMed  Google Scholar 

  • Ravet K, Touraine B, Boucherez J, Briat JF, Gayard F, Cellier F (2009) Ferritins control interaction between iron homeostasis and oxidative stress in Arabidopsis. Plant J 57:400–412

    Article  CAS  PubMed  Google Scholar 

  • Rehr SS, Janzen DH, Feeny PP (1973) L-DOPA in legume seeds: a chemical barrier to insect attack. Science 181:81–82

    Article  CAS  PubMed  Google Scholar 

  • Soares AR, Ferrarese MLL, Siqueira RC, Bohm FMLZ, Ferrarese-Filho O (2007) L-DOPA increases lignification associated to Glycine max root growth-inhibition. J Chem Ecol 33:265–275

    Article  CAS  PubMed  Google Scholar 

  • Stacey MG, Patel A, McClain WE, Mathieu M, Remley M, Rogers EE, Gassmann W, Blevins DG, Stacey G (2008) The Arabidopsis AtOPT3 protein functions in metal homeostasis and movement of iron to developing seeds. Plant Physiol 146:589–601

    Article  CAS  PubMed  Google Scholar 

  • Thimm O, Essigmann B, Kloska S, Altmann T, Buckhout TJ (2001) Response of Arabidopsis to iron deficiency stress as revealed by microarray analysis. Plant Physiol 127:1030–1043

    Article  CAS  PubMed  Google Scholar 

  • Wang HY, Klatte M, Jakoby M, Baumlein H, Weisshaar B, Bauer P (2007) Iron deficiency-mediated stress regulation of four subgroup Ib BHLH genes in Arabidopsis thaliana. Planta 226:897–908

    Article  CAS  PubMed  Google Scholar 

  • Wintz H, Fox T, Wu YY, Feng V, Chen W, Chang HS, Zhu T, Vulpe C (2003) Expression profiles of Arabidopsis thaliana in mineral deficiencies reveal novel transporters involved in metal homeostasis. J Biol Chem 278:47644–47653

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Li L, Du J, Yuan Y, Cheng X, Ling HQ (2005) Molecular and biochemical characterization of the Fe(III) chelate reductase gene family in Arabidopsis thaliana. Plant Cell Physiol 46:1505–1514

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Japanese Society of Promotion of Science (JSPS fellowship award to Anna Golisz, Id. No. P 05643) and by the projects as follows: Research and Development Program for Resolving Critical Issues (project title, “Risk assessment of alien plants and their control in the field”), and by the Bio-oriented Technology Research Advancement Institution (BRAIN), Promotion of Basic Research Activities for Innovative Biosciences (project title, “Screening of allelochemicals and development of innovative bioactive substances”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiharu Fujii.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golisz, A., Sugano, M., Hiradate, S. et al. Microarray analysis of Arabidopsis plants in response to allelochemical l-DOPA. Planta 233, 231–240 (2011). https://doi.org/10.1007/s00425-010-1294-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-010-1294-7

Keywords

Navigation