Skip to main content
Log in

Simultaneous post-transcriptional gene silencing of two different chalcone synthase genes resulting in pure white flowers in the octoploid dahlia

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Garden dahlias (Dahlia variabilis) are autoallooctoploids with redundant genes producing wide color variations in flowers. There are no pure white dahlia cultivars, despite its long breeding history. However, the white areas of bicolor flower petals appear to be pure white. The objective of this experiment was to elucidate the mechanism by which the pure white color is expressed in the petals of some bicolor cultivars. A pigment analysis showed that no flavonoid derivatives were detected in the white areas of petals in a star-type cultivar ‘Yuino’ and the two seedling cultivars ‘OriW1’ and ‘OriW2’ borne from a red-white bicolor cultivar, ‘Orihime’, indicating that their white areas are pure white. Semi-quantitative RT-PCR showed that in the pure white areas, transcripts of two chalcone synthases (CHS), DvCHS1 and DvCHS2 which share 69% nucleotide similarity with each other, were barely detected. Premature mRNA of DvCHS1 and DvCHS2 were detected, indicating that these two CHS genes are silenced post-transcriptionally. RNA gel blot analysis revealed that small interfering RNAs (siRNAs) derived from CHSs were produced in these pure white areas. By high-throughput sequence analysis of small RNAs in the pure white areas with no mismatch acceptance, small RNAs were mapped to two alleles of DvCHS1 and two alleles of DvCHS2 expressed in ‘Yuino’ petals. Therefore, we concluded that simultaneous siRNA-mediated post-transcriptional gene silencing of redundant CHS genes results in the appearance of pure white color in dahlias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

3GT:

Anthocyanidin 3-glucosyltransferase

ANS:

Anthocyanidin synthase

bHLH:

Basic helix-loop-helix

CHI:

Chalcone isomerase

CHS:

Chalcone synthase

DFR:

Dihydroflavonol 4-reductase

F3H:

Flavanone 3-hydroxylase

FLS:

Flavonol synthase

FNS:

Flavone synthase

HPLC:

High-performance liquid chromatography

ORF:

Open-reading frame

PTGS:

Post-transcriptional gene silencing

siRNA:

Small interfering RNA

SNPs:

Single nucleotide polymorphisms

TLC:

Thin layer chromatography

TGS:

Transcriptional gene silencing

WDR:

WD40 repeats

References

  • Bate-Smith EC, Swain T, Nördstrom CG (1955) Chemistry and inheritance of flower colour in the Dahlia. Nature 176:1016–1018

    Article  CAS  Google Scholar 

  • De Paoli E, Dorantes-Acosta A, Jixian Z, Accerbi M, Jeong DH, Sunhee P, Meyers BC, Jorgensen RA, Green PJ (2009) Distinct extremely abundant siRNAs associated with cosuppression in petunia. RNA 15:1965–1970

    Article  PubMed  Google Scholar 

  • Ferrer JL, Jez JM, Bowman ME, Dixon RA, Noel JP (1999) Structure of chalcone synthase and the molecular basis of plant polyketide biosynthesis. Nat Struct Biol 6:775–784

    Article  PubMed  CAS  Google Scholar 

  • Fukusaki EI, Kawasaki K, Kajiyama S, An CI, Suzuki K, Tanaka Y, Kobayashi A (2004) Flower color modulations of Torenia hybrida by downregulation of chalcone synthase genes with RNA interference. J Biotechnol 111:229–240

    Article  PubMed  CAS  Google Scholar 

  • Gatt M, Ding H, Hammett K, Murray B (1998) Polyploidy and evolution in wild and cultivated Dahlia species. Ann Bot 81:647–656

    Article  Google Scholar 

  • Ghildiyal M, Zamore PD (2009) Small silencing RNAs: an expanding universe. Nat Rev Gen 10:94–108

    Article  CAS  Google Scholar 

  • Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286:950–952

    Article  PubMed  CAS  Google Scholar 

  • Harborne JB (1984) Phytochemical methods, 2nd edn. Chapman and Hall, London

    Book  Google Scholar 

  • Hemleben V, Dressel A, Epping B, Lukačin R, Martens S, Austin MB (2004) Characterization and structural features of a chalcone synthase mutation in a white-flowering line of Matthiola incana R. Br. (Brassicaceae). Plant Mol Biol 55:455–465

    Article  PubMed  CAS  Google Scholar 

  • Hichri I, Barrieu F, Bogs J, Kappel C, Delrot S, Lauvergeat V (2011) Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. J Exp Bot. doi:10.1093/jxb/erq442

  • Hoshino A, Park KI, Iida S (2009) Identification of r mutations conferring white flowers in the Japanese morning glory (Ipomoea nil). J Plant Res 122:215–222

    Article  PubMed  Google Scholar 

  • Jiang CZ, Chen JC, Reid M (2011) Virus-induced gene silencing in ornamental plants. Methods Mol Biol 744:81–96

    Article  PubMed  CAS  Google Scholar 

  • Koseki M, Goto K, Masuta C, Kanazawa A (2005) The star-type color pattern in Petunia hybrida ‘Red Star’ flowers is induced by sequence-specific degradation of chalcone synthase RNA. Plant Cell Physiol 46:1879–1883

    Article  PubMed  CAS  Google Scholar 

  • Kurauchi T, Matsumoto T, Taneda A, Sano T, Senda M (2009) Endogenous short interfering RNAs of chalcone synthase genes associated with inhibition of seed coat pigmentation in soybean. Breed Sci 59:419–426

    Article  CAS  Google Scholar 

  • Lawrence WJC (1929) The genetics and cytology of Dahlia species. J Genet 21:125–159

    Article  Google Scholar 

  • Lawrence RJ, Pikaard CS (2003) Transgene-induced RNA interference: a strategy for overcoming gene redundancy in polyploids to generate loss-of-function mutations. Plant J 36:114–121

    Article  PubMed  CAS  Google Scholar 

  • Ma LQ, Pang XB, Shen HY, Pu GB, Wang HH, Lei CY, Wang H, Li GF, Liu BY, Ye HC (2009) A novel type III polyketide synthase encoded by a three-intron gene from Polygonum cuspidatum. Planta 229:457–469

    Article  PubMed  CAS  Google Scholar 

  • Martin C, Carpenter R, Sommer H, Saedler H, Coen ES (1985) Molecular analysis of instability in flower pigmentation of Antirrhinum majus, following isolation of the pallida locus by transposon tagging. EMBO J 4:1625–1630

    PubMed  CAS  Google Scholar 

  • Mato M, Onozaki T, Ozeki Y, Higeta D, Itoh Y, Yoshimoto Y, Ikeda H, Yoshida H, Shibata M (2000) Flavonoid biosynthesis in white-flowered Sim carnations (Dianthus caryophyllus). Sci Hortic 84:333–347

    Article  CAS  Google Scholar 

  • McClaren M (2009) Dahlia: history and species. In: McClaren B (ed) Encyclopedia of dahlias. Timber Press, Portland, pp 161–166

    Google Scholar 

  • Metzlaff M, O’Dell M, Cluster PD, Flavell RB (1997) RNA-mediated RNA degradation and chalcone synthase A silencing in Petunia. Cell 88:845–854

    Article  PubMed  CAS  Google Scholar 

  • Morita Y, Saitoh M, Hoshino A, Nitasaka E, Iida S (2006) Isolation of cDNAs for R2R3-MYB, bHLH and WDR transcriptional regulators and identification of c and ca mutations conferring white flowers in the Japanese morning glory. Plant Cell Physiol 47:457–470

    Article  PubMed  CAS  Google Scholar 

  • Nakatsuka T, Nishihara M, Mishiba K, Yamamura S (2005) Two different mutations are involved in the formation of white-flowered gentian plants. Plant Sci 169:949–958

    Article  CAS  Google Scholar 

  • Nakatsuka T, Mishiba KI, Kubota A, Abe Y, Yamamura S, Nakamura N, Tanaka Y, Nishihara M (2010) Genetic engineering of novel flower colour by suppression of anthocyanin modification genes in gentian. J Plant Physiol 167:231–237

    Article  PubMed  CAS  Google Scholar 

  • Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–289

    Article  PubMed  CAS  Google Scholar 

  • Nesi N, Debeaujon I, Jond C, Pelletier G, Caboche M, Lepiniec L (2000) The TT8 gene encodes a basic helix-loop-helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques. Plant Cell 12:1863–1878

    Article  PubMed  CAS  Google Scholar 

  • Nordström CG, Swain T (1956) The flavonoid glycosides of Dahlia variabilis. II. Glycosides of yellow varieties Pius IX and Coton. Arch Biochem Biophys 60:329–344

    Article  PubMed  Google Scholar 

  • Nordström CG, Swain T (1958) The flavonoid glycosides of Dahlia variabilis. III. Glycosides from white varieties. Arch Biochem Biophys 73:220–223

    Article  PubMed  Google Scholar 

  • Ohno S, Hosokawa M, Hoshino A, Kitamura Y, Morita M, Park KI, Nakashima A, Deguchi A, Tatsuzawa F, Doi M, Iida S, Yazawa S (2011) bHLH transcription factor, DvIVS, is involved in regulation of anthocyanin synthesis in dahlia (Dahlia variabilis). J Exp Bot (in press)

  • Onozaki T, Mato M, Shibata M, Ikeda H (1999) Differences in flower color and pigment composition among white carnation (Dianthus caryophyllus L.) cultivars. Sci Hortic 82:103–111

    Article  CAS  Google Scholar 

  • Park KI, Choi JD, Hoshino A, Morita Y, Iida S (2004) An intragenic tandem duplication in a transcriptional regulatory gene for anthocyanin biosynthesis confers pale-colored flowers and seeds with fine spots in Ipomoea tricolor. Plant J 38:840–849

    Article  PubMed  CAS  Google Scholar 

  • Park KI, Ishikawa N, Morita Y, Choi JD, Hoshino A, Iida S (2007) A bHLH regulatory gene in the common morning glory, Ipomoea purpurea, controls anthocyanin biosynthesis in flowers, proanthocyanidin and phytomelanin pigmentation in seeds, and seed trichome formation. Plant J 49:641–654

    Article  PubMed  CAS  Google Scholar 

  • Quattrocchio F, Wing JF, Leppen HTC, Mol JNM, Koes RE (1993) Regulatory genes controlling anthocyanin pigmentation are functionally conserved among plant species and have distinct sets of target genes. Plant Cell 5:1497–1512

    Article  PubMed  CAS  Google Scholar 

  • Saito N, Ishizuka K, Osawa Y (1970) Paper-chromatographic identification of flavonoids from a scarlet-flowering dahlia and crystallization of pelargonidin and butein. Bot Mag Tokyo 83:229–232

    CAS  Google Scholar 

  • Senda M, Jumonji A, Yumoto S, Ishikawa R, Harada T, Niizeki M, Akada S (2002) Analysis of the duplicated CHS1 gene related to the suppression of the seed coat pigmentation in yellow soybeans. Theor Appl Genet 104:1086–1091

    Article  PubMed  CAS  Google Scholar 

  • Spelt C, Quattrocchio F, Mol JNM, Koes R (2000) anthocyanin1 of Petunia encodes a basic helix-loop-helix protein that directly activates transcription of structural anthocyanin genes. Plant Cell 12:1619–1631

    Article  PubMed  CAS  Google Scholar 

  • Spelt C, Quattrocchio F, Mol J, Koes R (2002) ANTHOCYANIN1 of petunia controls pigment synthesis, vacuolar pH, and seed coat development by genetically distinct mechanisms. Plant Cell 14:2121–2135

    Article  PubMed  CAS  Google Scholar 

  • Spribille R, Forkmann G (1982) Genetic control of chalcone synthase activity in flowers of Antirrhinum majus. Phytochemistry 21:2231–2234

    Article  CAS  Google Scholar 

  • Stam M (1997) Post-transcriptional silencing of flower pigmentation genes in Petunia hybrida by (trans)gene repeats. PhD thesis, Vrije Universiteit

  • Suzuki H, Nakayama T, Yonekura-Sakakibara K, Fukui Y, Nakamura N, Yamaguchi MA, Tanaka Y, Kusumi T, Nishino T (2002) cDNA cloning, heterologous expressions, and functional characterization of malonyl-coenzyme A:anthocyanidin 3-O-glucoside-6′-O-malonyltransferase from dahlia flowers. Plant Physiol 130:2142–2151

    Article  PubMed  CAS  Google Scholar 

  • Tuteja JH, Zabala G, Varala K, Hudson M, Vodkin LO (2009) Endogenous, tissue-specific short interfering RNAs silence the chalcone synthase gene family in Glycine max seed coats. Plant Cell 21:3063–3077

    Article  PubMed  CAS  Google Scholar 

  • Van Der Krol AR, Mur LA, Beld M, Mol JNM, Stuitje AR (1990) Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell 2:291–299

    Article  PubMed  Google Scholar 

  • Zheng D, Schröder G, Schröder J, Hrazdina G (2001) Molecular and biochemical characterization of three aromatic polyketide synthase genes from Rubus idaeus. Plant Mol Biol 46:1–15

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Munetaka Hosokawa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (DOCX 1,079 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohno, S., Hosokawa, M., Kojima, M. et al. Simultaneous post-transcriptional gene silencing of two different chalcone synthase genes resulting in pure white flowers in the octoploid dahlia. Planta 234, 945–958 (2011). https://doi.org/10.1007/s00425-011-1456-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-011-1456-2

Keywords

Navigation