Skip to main content

Advertisement

Log in

Lipidomic analysis of N-acylphosphatidylethanolamine molecular species in Arabidopsis suggests feedback regulation by N-acylethanolamines

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

N-Acylphosphatidylethanolamine (NAPE) and its hydrolysis product, N-acylethanolamine (NAE), are minor but ubiquitous lipids in multicellular eukaryotes. Various physiological processes are severely affected by altering the expression of fatty acid amide hydrolase (FAAH), an NAE-hydrolyzing enzyme. To determine the effect of altered FAAH activity on NAPE molecular species composition, NAE metabolism, and general membrane lipid metabolism, quantitative profiles of NAPEs, NAEs, galactolipids, and major and minor phospholipids for FAAH mutants of Arabidopsis were determined. The NAPE molecular species content was dramatically affected by reduced FAAH activity and elevated NAE content in faah knockouts, increasing by as much as 36-fold, far more than the NAE content, suggesting negative feedback regulation of phospholipase D-mediated NAPE hydrolysis by NAE. The N-acyl composition of NAPE remained similar to that of NAE, suggesting that the NAPE precursor pool largely determines NAE composition. Exogenous NAE 12:0 treatment elevated endogenous polyunsaturated NAE and NAPE levels in seedlings; NAE levels were increased more in faah knockouts than in wild-type or FAAH overexpressors. Treated seedlings with elevated NAE and NAPE levels showed impaired growth and reduced galactolipid synthesis by the “prokaryotic” (i.e., plastidic), but not the “eukaryotic” (i.e., extraplastidic), pathway. Overall, our data provide new insights into the regulation of NAPE–NAE metabolism and coordination of membrane lipid metabolism and seedling development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

DGDG:

Digalactosyldiacylglycerol

EA:

Ethanolamine

FAAH:

Fatty acid amide hydrolase

FFA:

Free fatty acid

FW:

Fresh weight

KO:

Knock-out

LOX:

Lipoxygenase

MGDG:

Monogalactosyldiacylglycerol

MS:

Mass spectrometry

NAE:

N-acylethanolamine

NAPE:

N-acyl PE

NL:

Neutral loss

OE:

Overexpressor

PA:

Phosphatidic acid

PC:

Phosphatidylcholine

PE:

Phosphatidylethanolamine

PG:

Phosphatidylglycerol

PI:

Phosphatidylinositol

PLD:

Phospholipase D

Pre:

Precursor

PS:

Phosphatidylserine

PU:

Polyunsaturated

SPE:

Solid phase extraction

X:Y:

Designates fatty acid or total acyl carbons:total carbon–carbon double bonds

References

  • Astarita G, Piomelli D (2009) Lipidomic analysis of endocannabinoid metabolism in biological samples. J Chromatogr B Analyt Technol Biomed Life Sci 877:2755–2767

    Article  PubMed  CAS  Google Scholar 

  • Astarita G, Geaga J, Ahmed F, Piomelli D (2009) Targeted lipidomics as a tool to investigate endocannabinoid function. Int Rev Neurobiol 85:35–55

    Article  PubMed  CAS  Google Scholar 

  • Austin-Brown SL, Chapman KD (2002) Inhibition of phospholipase D alpha by N-acylethanolamines. Plant Physiol 129:1892–1898

    Article  PubMed  CAS  Google Scholar 

  • Benning C (2009) Mechanisms of lipid transport involved in organelle biogenesis in plant cells. Annu Rev Cell Dev Biol 25:71–91

    Article  PubMed  CAS  Google Scholar 

  • Blancaflor EB, Hou G, Chapman KD (2003) Elevated levels of N-lauroylethanolamine, an endogenous constituent of desiccated seeds, disrupt normal root development in Arabidopsis thaliana seedlings. Planta 217:206–217

    PubMed  CAS  Google Scholar 

  • Brugger B, Erben G, Sandhoff R, Wieland FT, Lehmann WD (1997) Quantitative analysis of biological membrane lipids at the low picomole level by nano-electrospray ionization tandem mass spectrometry. Proc Natl Acad Sci USA 94:2339–2344

    Article  PubMed  CAS  Google Scholar 

  • Bulat E, Garrett TA (2011) Putative N-acylphosphatidylethanolamine synthase from Arabidopsis thaliana is a lysoglycerophospholipid acyltransferase. J Biol Chem 286:33819–33831

    Article  PubMed  CAS  Google Scholar 

  • Chapman KD, Blancaflor EB (2011) N-Acylethanolamine metabolism—a regulatory pathway diverged from endocannabinoid signaling in mammals. ASBMB Today Jan 2011:34–35

  • Chapman KD, Moore TS Jr (1993a) Catalytic properties of a newly discovered acyltransferase that synthesizes N-acylphosphatidylethanolamine in cottonseed (Gossypium hirsutum L.) microsomes. Plant Physiol 102:761–769

    PubMed  CAS  Google Scholar 

  • Chapman KD, Moore TS Jr (1993b) N-acylphosphatidylethanolamine synthesis in plants: occurrence, molecular composition, and phospholipid origin. Arch Biochem Biophys 301:21–33

    Article  PubMed  CAS  Google Scholar 

  • Chapman KD, Sprinkle WB (1996) Developmental, tissue-specific and environmental factors regulate the biosynthesis of N-acylphosphatidylethanolamine in cotton (Gossypium hirsutum L.). J Plant Physiol 149:277–284

    Article  CAS  Google Scholar 

  • Chapman KD, Lin I, DeSouza AD (1995) Metabolism of cottonseed microsomal N-acylphosphatidylethanolamine. Arch Biochem Biophys 318:401–407

    Article  PubMed  CAS  Google Scholar 

  • Cotter MQ, Teaster ND, Blancaflor EB, Chapman KD (2011) N-acylethanolamine (NAE) inhibits growth in Arabidopsis thaliana seedlings via ABI3-dependent and -independent pathways. Plant Signal Behav 6:671–679

    Article  PubMed  CAS  Google Scholar 

  • Coulon D, Faure L, Salmon M, Wattelet V, Bessoule JJ (2012) Occurrence, biosynthesis and functions of N-acylphosphatidylethanolamines (NAPE): not just precursors of N-acylethanolamines (NAE). Biochimie 94:75–85

    Article  PubMed  CAS  Google Scholar 

  • Devaiah SP, Roth MR, Baughman E, Li M, Tamura P, Jeannotte R, Welti R, Wang X (2006) Quantitative profiling of polar glycerolipid species from organs of wild-type Arabidopsis and a phospholipase Dalpha1 knockout mutant. Phytochemistry 67:1907–1924

    Article  PubMed  CAS  Google Scholar 

  • Faure L, Coulon D, Laroche-Traineau J, Le Guedard M, Schmitter JM, Testet E, Lessire R, Bessoule JJ (2009) Discovery and characterization of an Arabidopsis thaliana N-acylphosphatidylethanolamine synthase. J Biol Chem 284:18734–18741

    Article  PubMed  CAS  Google Scholar 

  • Kang L, Wang YS, Uppalapati SR, Wang K, Tang Y, Vadapalli V, Venables BJ, Chapman KD, Blancaflor EB, Mysore KS (2008) Overexpression of a fatty acid amide hydrolase compromises innate immunity in Arabidopsis. Plant J 56:336–349

    Article  PubMed  CAS  Google Scholar 

  • Keereetaweep J, Kilaru A, Feussner I, Venables BJ, Chapman KD (2010) Lauroylethanolamide is a potent competitive inhibitor of lipoxygenase activity. FEBS Lett 584:3215–3222

    Article  PubMed  CAS  Google Scholar 

  • Kilaru A, Blancaflor EB, Venables BJ, Tripathy S, Mysore KS, Chapman KD (2007) The N-acylethanolamine-mediated regulatory pathway in plants. Chem Biodivers 4:1933–1955

    Article  PubMed  CAS  Google Scholar 

  • Kilaru A, Isaac G, Tamura P, Baxter D, Duncan SR, Venables BJ, Welti R, Koulen P, Chapman KD (2010) Lipid profiling reveals tissue-specific differences for ethanolamide lipids in mice lacking fatty acid amide hydrolase. Lipids 45:863–875

    Article  PubMed  CAS  Google Scholar 

  • Kilaru A, Herrfurth C, Keereetaweep J, Hornung E, Venables BJ, Feussner I, Chapman KD (2011a) Lipoxygenase-mediated oxidation of polyunsaturated N-acylethanolamines in Arabidopsis. J Biol Chem 286:15205–15214

    Article  PubMed  CAS  Google Scholar 

  • Kilaru A, Tamura P, Garg P, Isaac G, Baxter D, Duncan SR, Welti R, Koulen P, Chapman KD, Venables BJ (2011b) Changes in N-acylethanolamine pathway related metabolites in a rat model of cerebral ischemia/reperfusion. J Glycom and Lipidom 1:101

    Google Scholar 

  • Kim S-C, Kang L, Nagaraj S, Blancaflor EB, Mysore KS, Chapman KD (2009) Mutations in Arabidopsis fatty acid amide hydrolase reveal that catalytic activity influences growth but not sensitivity to abscisic acid or pathogens. J Biol Chem 284:34065–34074

    Article  PubMed  CAS  Google Scholar 

  • Kim S-C, Chapman KD, Blancaflor EB (2010) Fatty acid amide lipid mediators in plants. Plant Sci 178:411–419

    Article  CAS  Google Scholar 

  • McAndrew RS, Chapman KD (1998) Enzymology of cottonseed microsomal N-acylphosphatidylethanolamine synthase: kinetic properties and mechanism-based inactivation. Biochim Biophys Acta 1390:21–36

    Article  PubMed  CAS  Google Scholar 

  • Motes CM, Pechter P, Yoo CM, Wang YS, Chapman KD, Blancaflor EB (2005) Differential effects of two phospholipase D inhibitors, 1-butanol and N-acylethanolamine, on in vivo cytoskeletal organization and Arabidopsis seedling growth. Protoplasma 226:109–123

    Article  PubMed  CAS  Google Scholar 

  • Natarajan V, Reddy PV, Schmid PC, Schmid HH (1982) N-Acylation of ethanolamine phospholipids in canine myocardium. Biochim Biophys Acta 712:342–355

    Article  PubMed  CAS  Google Scholar 

  • Ohlrogge J, Browse J (1995) Lipid biosynthesis. Plant Cell 7:957–970

    PubMed  CAS  Google Scholar 

  • Pappan K, Austin-Brown S, Chapman KD, Wang X (1998) Substrate selectivities and lipid modulation of plant phospholipase D alpha, -beta, and -gamma. Arch Biochem Biophys 353:131–140

    Article  PubMed  CAS  Google Scholar 

  • Rawyler AJ, Braendle RA (2001) N-Acylphosphatidylethanolamine accumulation in potato cells upon energy shortage caused by anoxia or respiratory inhibitors. Plant Physiol 127:240–251

    Article  PubMed  CAS  Google Scholar 

  • Sandoval JA, Huang ZH, Garrett DC, Gage DA, Chapman KD (1995) N-acylphosphatidylethanolamine in dry and imbibing cottonseeds. Amounts, molecular species, and enzymatic synthesis. Plant Physiol 109:269–275

    Article  PubMed  CAS  Google Scholar 

  • Schmid HH (2000) Pathways and mechanisms of N-acylethanolamine biosynthesis: can anandamide be generated selectively? Chem Phys Lipids 108:71–87

    Article  PubMed  CAS  Google Scholar 

  • Shoemaker DP, Garland CW, Steinfeld JI (1974) Experiments in physical chemistry. McGraw-Hill, New York

    Google Scholar 

  • Shrestha R, Noordermeer MA, Van der Stelt M, Veldink GA, Chapman KD (2002) N-acylethanolamines are metabolized by lipoxygenase and amidohydrolase in competing pathways during cottonseed inhibition. Plant Physiol 130:391–401

    Article  PubMed  CAS  Google Scholar 

  • Shrestha R, Dixon RA, Chapman KD (2003) Molecular identification of a functional homologue of the mammalian fatty acid amide hydrolase in Arabidopsis thaliana. J Biol Chem 278:34990–34997

    Article  PubMed  CAS  Google Scholar 

  • Sugiura T, Kondo S, Sukagawa A, Tonegawa T, Nakane S, Yamashita A, Waku K (1996) Enzymatic synthesis of anandamide, an endogenous cannabinoid receptor ligand, through N-acylphosphatidylethanolamine pathway in testis: involvement of Ca(2+)-dependent transacylase and phosphodiesterase activities. Biochem Biophys Res Commun 218:113–117

    Article  PubMed  CAS  Google Scholar 

  • Teaster ND (2009) A regulatory role for N-acylethanolamine metabolism in Arabidopsis thaliana seeds and seedlings. Thesis (PhD)–University of North Texas, May, 2009

  • Teaster ND, Motes CM, Tang Y, Wiant WC, Cotter MQ, Wang YS, Kilaru A, Venables BJ, Hasenstein KH, Gonzalez G, Blancaflor EB, Chapman KD (2007) N-Acylethanolamine metabolism interacts with abscisic acid signaling in Arabidopsis thaliana seedlings. Plant Cell 19:2454–2469

    Article  PubMed  CAS  Google Scholar 

  • Thomas EA, Cravatt BF, Danielson PE, Gilula NB, Sutcliffe JG (1997) Fatty acid amide hydrolase, the degradative enzyme for anandamide and oleamide, has selective distribution in neurons within the rat central nervous system. J Neurosci Res 50:1047–1052

    Article  PubMed  CAS  Google Scholar 

  • Ueda N, Okamoto Y, Morishita J (2005a) N-acylphosphatidylethanolamine-hydrolyzing phospholipase D: a novel enzyme of the beta-lactamase fold family releasing anandamide and other N-acylethanolamines. Life Sci 77:1750–1758

    Article  PubMed  CAS  Google Scholar 

  • Ueda N, Tsuboi K, Lambert DM (2005b) A second N-acylethanolamine hydrolase in mammalian tissues. Neuropharmacology 48:1079–1085

    Article  PubMed  CAS  Google Scholar 

  • Venables BJ, Waggoner CA, Chapman KD (2005) N-acylethanolamines in seeds of selected legumes. Phytochemistry 66:1913–1918

    Article  PubMed  CAS  Google Scholar 

  • Wang YS, Shrestha R, Kilaru A, Wiant W, Venables BJ, Chapman KD, Blancaflor EB (2006) Manipulation of Arabidopsis fatty acid amide hydrolase expression modifies plant growth and sensitivity to N-acylethanolamines. Proc Natl Acad Sci USA 103:12197–12202

    Article  PubMed  CAS  Google Scholar 

  • Welti R, Li W, Li M, Sang Y, Biesiada H, Zhou HE, Rajashekar CB, Williams TD, Wang X (2002) Profiling membrane lipids in plant stress responses: role of phospholipase Dα in freezing-induced lipid changes in Arabidopsis. J Biol Chem 277:31994–32002

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the United States Department of Energy, Office of Basic Energy Sciences (BES, grant number DE-FG02-05ER15647) and a seed grant from the University of North Texas to KDC. Method development and equipment acquisition at the Kansas Lipidomics Research Center was funded by National Science Foundation (DBI 0521587; MCB 0455318 and 0920663), Kansas IDeA Networks of Biomedical Research Excellence (INBRE) of the National Institute of Health (P20RR16475) and Kansas State University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aruna Kilaru or Kent D. Chapman.

Additional information

A. Kilaru and P. Tamura contributed equally to the work.

A contribution to the Special Issue on Metabolic Plant Biology.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 161 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kilaru, A., Tamura, P., Isaac, G. et al. Lipidomic analysis of N-acylphosphatidylethanolamine molecular species in Arabidopsis suggests feedback regulation by N-acylethanolamines. Planta 236, 809–824 (2012). https://doi.org/10.1007/s00425-012-1669-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-012-1669-z

Keywords

Navigation