Skip to main content
Log in

Brain mechanisms for predictive control by switching internal models: implications for higher-order cognitive functions

  • Original Article
  • Published:
Psychological Research PRPF Aims and scope Submit manuscript

Abstract

Humans can guide their actions toward the realization of their intentions. Flexible, rapid and precise realization of intentions and goals relies on the brain learning to control its actions on external objects and to predict the consequences of this control. Neural mechanisms that mimic the input–output properties of our own body and other objects can be used to support prediction and control, and such mechanisms are called internal models. We first summarize functional neuroimaging, behavioral and computational studies of the brain mechanisms related to acquisition, modular organization, and the predictive switching of internal models mainly for tool use. These mechanisms support predictive control and flexible switching of intentional actions. We then review recent studies demonstrating that internal models are crucial for the execution of not only immediate actions but also higher-order cognitive functions, including optimization of behaviors toward long-term goals, social interactions based on prediction of others’ actions and mental states, and language processing. These studies suggest that a concept of internal models can consistently explain the neural mechanisms and computational principles needed for fundamental sensorimotor functions as well as higher-order cognitive functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Baron-Cohen, S. (1997). Mindblindness: An essay on autism and theory of mind (learning, development and conceptual change). Cambridge: MIT Press.

    Google Scholar 

  • Blakemore, S. J., & Decety, J. (2001). From the perception of action to the understanding of intention. Nature Reviews Neuroscience, 2(8), 561–567.

    Article  PubMed  Google Scholar 

  • Blakemore, S. J., Frith, C. D., & Wolpert, D. M. (2001). The cerebellum is involved in predicting the sensory consequences of action. Neuroreport, 12(9), 1879–1884.

    Article  PubMed  Google Scholar 

  • Blakemore, S. J., Wolpert, D. M., & Frith, C. D. (1998). Central cancellation of self-produced tickle sensation. Nature Neuroscience, 1(7), 635–640.

    Article  PubMed  Google Scholar 

  • Bonda, E., Petrides, M., Ostry, D., & Evans, A. (1996). Specific involvement of human parietal systems and the amygdala in the perception of biological motion. Journal of Neuroscience, 16(11), 3737–3744.

    PubMed  Google Scholar 

  • Brashers-Krug, T., Shadmehr, R., & Bizzi, E. (1996). Consolidation in human motor memory. Nature, 382(6588), 252–255.

    Article  PubMed  Google Scholar 

  • Bursztyn, L. L., Ganesh, G., Imamizu, H., Kawato, M., & Flanagan, J. R. (2006). Neural correlates of internal-model loading. Current Biology, 16(24), 2440–2445.

    Article  PubMed  Google Scholar 

  • Clower, D. M., West, R. A., Lynch, J. C., & Strick, P. L. (2001). The inferior parietal lobule is the target of output from the superior colliculus, hippocampus, and cerebellum. Journal of Neuroscience, 21(16), 6283–6291.

    PubMed  Google Scholar 

  • Daw, N. D., Niv, Y., & Dayan, P. (2005). Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nature Neuroscience, 8(12), 1704–1711.

    Article  PubMed  Google Scholar 

  • Decety, J., Jackson, P. L., Sommerville, J. A., Chaminade, T., & Meltzoff, A. N. (2004). The neural bases of cooperation and competition: An fMRI investigation. Neuroimage, 23(2), 744–751.

    Article  PubMed  Google Scholar 

  • Diedrichsen, J., Criscimagna-Hemminger, S. E., & Shadmehr, R. (2007). Dissociating timing and coordination as functions of the cerebellum. Journal of Neuroscience, 27(23), 6291–6301.

    Article  PubMed  Google Scholar 

  • Doya, K. (1999). What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? Neural Networks, 12(7–8), 961–974.

    Article  PubMed  Google Scholar 

  • Doya, K. (2000). Complementary roles of basal ganglia and cerebellum in learning and motor control. Current Opinion in Neurobiology, 10(6), 732–739.

    Article  PubMed  Google Scholar 

  • Doya, K., Okada, G., Ueda, K., Okamoto, Y., & Yamawaki, S. (2001). Pediction of short- and long-term reward: A functional MRI study with a Markov decision problem. Paper presented at the Annual Meeting Society for Neuroscience.

  • Ebner, T. J., & Pasalar, S. (2008). Cerebellum predicts the future motor state. Cerebellum, 7(4), 583–588.

    Article  PubMed  Google Scholar 

  • Flanagan, J. R., Nakano, E., Imamizu, H., Osu, R., Yoshioka, T., & Kawato, M. (1999). Composition and decomposition of internal models in motor learning under altered kinematic and dynamic environments. Journal of Neuroscience, 19(20), RC34.

    PubMed  Google Scholar 

  • Flanagan, J. R., & Wing, A. M. (1997). The role of internal models in motion planning and control: Evidence from grip force adjustments during movements of hand-held loads. Journal of Neuroscience, 17(4), 1519–1528.

    PubMed  Google Scholar 

  • Friederici, A. D., Bahlmann, J., Heim, S., Schubotz, R. I., & Anwander, A. (2006). The brain differentiates human and non-human grammars: Functional localization and structural connectivity. Proceedings of the National Academy of Sciences of the USA, 103(7), 2458–2463.

    Article  PubMed  Google Scholar 

  • Friston, K. J., Harrison, L., & Penny, W. (2003). Dynamic causal modelling. Neuroimage, 19, 1273–1302.

    Article  PubMed  Google Scholar 

  • Frith, C. D., Blakemore, S. J., & Wolpert, D. M. (2000). Abnormalities in the awareness and control of action. Philosophical Transactions of the Royal Society of London Series B Biological Sciences, 355(1404), 1771–1788.

    Article  Google Scholar 

  • Frith, C. D., & Frith, U. (1999). Interacting minds—A biological basis. Science, 286(5445), 1692–1695.

    Article  PubMed  Google Scholar 

  • Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain, 119(Pt 2), 593–609.

    Article  PubMed  Google Scholar 

  • Gandolfo, F., Mussa-Ivaldi, F. A., & Bizzi, E. (1996). Motor learning by field approximation. Proceedings of the National Academy of Sciences of the USA, 93(9), 3843–3846.

    Article  PubMed  Google Scholar 

  • Ghahramani, Z., & Wolpert, D. M. (1997). Modular decomposition in visuomotor learning. Nature, 386(6623), 392–395.

    Article  PubMed  Google Scholar 

  • Gomi, H., Shidara, M., Takemura, A., Inoue, Y., Kawano, K., & Kawato, M. (1998). Temporal firing patterns of purkinje cells in the cerebellar ventral paraflocculus during ocular following responses in monkeys I. Simple spikes (in process citation). Journal of Neurophysiology, 80(2), 818–831.

    PubMed  Google Scholar 

  • Graydon, F. X., Friston, K. J., Thomas, C. G., Brooks, V. B., & Menon, R. S. (2005). Learning-related fMRI activation associated with a rotational visuo-motor transformation. Brain Research Cognitive Brain Research, 22, 373–383.

    Article  PubMed  Google Scholar 

  • Grodd, W., Hulsmann, E., Lotze, M., Wildgruber, D., & Erb, M. (2001). Sensorimotor mapping of the human cerebellum: fMRI evidence of somatotopic organization. Human Brain Mapping, 13(2), 55–73.

    Article  PubMed  Google Scholar 

  • Haruno, M., & Kawato, M. (in press). Activity in the superior temporal sulcus highlights learning competence in an interaction game. Journal of Neuroscience.

  • Haruno, M., Kuroda, T., Doya, K., Toyama, K., Kimura, M., Samejima, K., et al. (2004). A neural correlate of reward-based behavioral learning in caudate nucleus: A functional magnetic resonance imaging study of a stochastic decision task. Journal of Neuroscience, 24(7), 1660–1665.

    Article  PubMed  Google Scholar 

  • Haruno, M., Wolpert, D. M., & Kawato, M. (2001). Mosaic model for sensorimotor learning and control. Neural Computation, 13(10), 2201–2220.

    Article  PubMed  Google Scholar 

  • Hauser, M. D., Chomsky, N., & Fitch, W. T. (2002). The faculty of language: What is it, who has it, and how did it evolve? Science, 298(5598), 1569–1579.

    Article  PubMed  Google Scholar 

  • Higuchi, S., Imamizu, H., Chaminade, T., & Kawato, M. (2004). Broca’s area during tool—use and linguistic processing. Paper presented at the Annual Meeting Society for Neuroscience.

  • Higuchi, S., Imamizu, H., & Kawato, M. (2007). Cerebellar activity evoked by common tool-use execution and imagery tasks: An fMRI study. Cortex, 43(3), 350–358.

    Article  PubMed  Google Scholar 

  • Hoshi, E., Tremblay, L., Feger, J., Carras, P. L., & Strick, P. L. (2005). The cerebellum communicates with the basal ganglia. Nature Neuroscience, 8(11), 1491–1493.

    Article  PubMed  Google Scholar 

  • Hurley, S. (2008). The shared circuits model (SCM): How control, mirroring, and simulation can enable imitation, deliberation, and mindreading. The Behavioral and Brain Sciences, 31(1), 1–22. (discussion 22–58).

    Article  PubMed  Google Scholar 

  • Iacoboni, M., Koski, L. M., Brass, M., Bekkering, H., Woods, R. P., Dubeau, M. C., et al. (2001). Reafferent copies of imitated actions in the right superior temporal cortex. Proceedings of the National Academy of Sciences of the USA, 98(24), 13995–13999.

    Article  PubMed  Google Scholar 

  • Imamizu, H., Higuchi, S., Toda, A., & Kawato, M. (2007a). Reorganization of brain activity for multiple internal models after short but intensive training. Cortex, 43(3), 338–349.

    Article  PubMed  Google Scholar 

  • Imamizu, H., & Kawato, M. (2008). Neural correlates of predictive and postdictive switching mechanisms for internal models. Journal of Neuroscience, 28(42), 10751–10765.

    Article  PubMed  Google Scholar 

  • Imamizu, H., Kuroda, T., Miyauchi, S., Yoshioka, T., & Kawato, M. (2003). Modular organization of internal models of tools in the human cerebellum. Proceedings of the National Academy of Sciences of the USA, 100(9), 5461–5466.

    Article  PubMed  Google Scholar 

  • Imamizu, H., Kuroda, T., Yoshioka, T., & Kawato, M. (2004). Functional magnetic resonance imaging examination of two modular architectures for switching multiple internal models. Journal of Neuroscience, 24(5), 1173–1181.

    Article  PubMed  Google Scholar 

  • Imamizu, H., Miyauchi, S., Tamada, T., Sasaki, Y., Takino, R., Putz, B., et al. (2000). Human cerebellar activity reflecting an acquired internal model of a new tool. Nature, 403(6766), 192–195.

    Article  PubMed  Google Scholar 

  • Imamizu, H., Sugimoto, N., Osu, R., Tsutsui, K., Sugiyama, K., Wada, Y., et al. (2007b). Explicit contextual information selectively contributes to predictive switching of internal models. Experimental Brain Research, 181(3), 395–408.

    Article  Google Scholar 

  • Ito, M. (1984). The cerebellum and neural motor control. New York: Raven Press.

    Google Scholar 

  • Jacobs, R. A., Jordan, M. I., Nowlan, S. J., & Hinton, G. E. (1991). Adaptive mixture of local experts. Neural Computation, 3, 79–87.

    Article  Google Scholar 

  • Johansson, R. S., & Westling, G. (1988). Coordinated isometric muscle commands adequately and erroneously programmed for the weight during lifting task with precision grip. Experimental Brain Research, 71(1), 59–71.

    Google Scholar 

  • Karniel, A., & Mussa-Ivaldi, F. A. (2002). Does the motor control system use multiple models and context switching to cope with a variable environment? Experimental Brain Research, 143(4), 520–524.

    Article  Google Scholar 

  • Kawato, M. (1999). Internal models for motor control and trajectory planning. Current Opinion in Neurobiology, 9(6), 718–727.

    Article  PubMed  Google Scholar 

  • Kawato, M., Furukawa, K., & Suzuki, R. (1987). A hierarchical neural-network model for control and learning of voluntary movement. Biological Cybernetics, 57(3), 169–185.

    Article  PubMed  Google Scholar 

  • Kawato, M., Kuroda, T., Imamizu, H., Nakano, E., Miyauchi, S., & Yoshioka, T. (2003). Internal forward models in the cerebellum: fMRI study on grip force and load force coupling. Progress in Brain Research, 142, 171–188.

    Article  PubMed  Google Scholar 

  • Kawato, M., & Samejima, K. (2007). Efficient reinforcement learning: Computational theories, neuroscience and robotics. Current Opinion in Neurobiology, 17(2), 205–212.

    Article  PubMed  Google Scholar 

  • Kawawaki, D., Shibata, T., Goda, N., Doya, K., & Kawato, M. (2006). Anterior and superior lateral occipito-temporal cortex responsible for target motion prediction during overt and covert visual pursuit. Neuroscience Research, 54(2), 112–123.

    Article  PubMed  Google Scholar 

  • Kerns, J. G., Cohen, J. D., MacDonald, A. W., 3rd, Cho, R. Y., Stenger, V. A., & Carter, C. S. (2004). Anterior cingulate conflict monitoring and adjustments in control. Science, 303(5660), 1023–1026.

    Article  PubMed  Google Scholar 

  • Kitazawa, S., Kimura, T., & Yin, P. B. (1998). Cerebellar complex spikes encode both destinations and errors in arm movements. Nature, 392(6675), 494–497.

    Article  PubMed  Google Scholar 

  • Krakauer, J. W., Ghilardi, M. F., & Ghez, C. (1999). Independent learning of internal models for kinematic and dynamic control of reaching. Nature Neuroscience, 2(11), 1026–1031.

    Article  PubMed  Google Scholar 

  • Krakauer, J. W., Ghilardi, M. F., Mentis, M., Barnes, A., Veytsman, M., Eidelberg, D., et al. (2004). Differential cortical and subcortical activations in learning rotations and gains for reaching: A PET study. Journal of Neurophysiology, 91(2), 924–933.

    Article  PubMed  Google Scholar 

  • Kravitz, J. H., & Yaffe, F. L. (1972). Conditionned adaptation to prismatic displacement with a tone as the conditioal stimulus. Perception & Psychophysics, 12(3), 305–308.

    Google Scholar 

  • Maquet, P., Schwartz, S., Passingham, R., & Frith, C. (2003). Sleep-related consolidation of a visuomotor skill: Brain mechanisms as assessed by functional magnetic resonance imaging. Journal of Neuroscience, 23(4), 1432–1440.

    PubMed  Google Scholar 

  • Martin, A., & Chao, L. L. (2001). Semantic memory and the brain: Structure and processes. Current Opinion in Neurobiology, 11(2), 194–201.

    Article  PubMed  Google Scholar 

  • Miall, R. C. (2003). Connecting mirror neurons and forward models. Neuroreport, 14(17), 2135–2137.

    Article  PubMed  Google Scholar 

  • Miall, R. C., Keating, J. G., Malkmus, M., & Thach, W. T. (1998). Simple spike activity predicts occurrence of complex spikes in cerebellar Purkinje cells. Nature Neuroscience, 1(1), 13–15.

    Article  PubMed  Google Scholar 

  • Miall, R. C., Reckess, G. Z., & Imamizu, H. (2001). The cerebellum coordinates eye and hand tracking movements. Nature Neuroscience, 4(6), 638–644.

    Article  PubMed  Google Scholar 

  • Miall, R. C., Weir, D. J., Wolpert, D. M., & Stein, J. F. (1993). Is the cerebellum a Smith predictor? Journal of Motor Behavior, 25, 203–216.

    PubMed  Google Scholar 

  • Middleton, F. A., & Strick, P. L. (1997). Dentate output channels: Motor and cognitive components. In C. I. de Zeeuw, P. Strata, & J. Voogd (Eds.), The cerebellum: From structure to control (pp. 553–566). Amsterdam: Elsevier Science BV.

  • Middleton, F. A., & Strick, P. L. (2001). Cerebellar projections to the prefrontal cortex of the primate. Journal of Neuroscience, 21(2), 700–712.

    PubMed  Google Scholar 

  • Milner, T. E., Franklin, D. W., Imamizu, H., & Kawato, M. (2007). Central control of grasp: Manipulation of objects with complex and simple dynamics. Neuroimage, 36(2), 388–395.

    Article  PubMed  Google Scholar 

  • Obayashi, S., Suhara, T., Kawabe, K., Okauchi, T., Maeda, J., Akine, Y., et al. (2001). Functional brain mapping of monkey tool use. Neuroimage, 14(4), 853–861.

    Article  PubMed  Google Scholar 

  • O’Reilly, J. X., Mesulam, M. M., & Nobre, A. C. (2008). The cerebellum predicts the timing of perceptual events. Journal of Neuroscience, 28(9), 2252–2260.

    Article  PubMed  Google Scholar 

  • Osu, R., Hirai, S., Yoshioka, T., & Kawato, M. (2004). Random presentation enables subjects to adapt to two opposing forces on the hand. Nature Neuroscience, 7(2), 111–112.

    Article  PubMed  Google Scholar 

  • Oztop, E., Kawato, M., & Arbib, M. (2006). Mirror neurons and imitation: A computationally guided review. Neural Network, 19(3), 254–271.

    Article  Google Scholar 

  • Oztop, E., Wolpert, D., & Kawato, M. (2005). Mental state inference using visual control parameters. Brain Research Cognitive Brain Research, 22(2), 129–151.

    Article  PubMed  Google Scholar 

  • Raichle, M. E., Fiez, J. A., Videen, T. O., MacLeod, A. M., Pardo, J. V., Fox, P. T., et al. (1994). Practice-related changes in human brain functional anatomy during nonmotor learning. Cerebral Cortex, 4(1), 8–26.

    Article  PubMed  Google Scholar 

  • Sakai, K. L. (2005). Language acquisition and brain development. Science, 310(5749), 815–819.

    Article  PubMed  Google Scholar 

  • Sasaki, K., Oka, H., Kawaguchi, S., Jinnai, K., & Yasuda, T. (1977). Mossy fibre and climbing fibre responses produced in the cerebellar cortex by stimulation of the cerebral cortex in monkeys. Experimental Brain Research, 29(3–4), 419–428.

    Google Scholar 

  • Schmid, A., Rees, G., Frith, C., & Barnes, G. (2001). An fMRI study of anticipation and learning of smooth pursuit eye movements in humans. Neuroreport, 12(7), 1409–1414.

    Article  PubMed  Google Scholar 

  • Schultz, W., Apicella, P., & Ljungberg, T. (1993). Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task. Journal of Neuroscience, 13(3), 900–913.

    PubMed  Google Scholar 

  • Schultz, J., Imamizu, H., Kawato, M., & Frith, C. D. (2004). Activation of the human superior temporal gyrus during observation of goal attribution by intentional objects. Journal of Cognitive Neuroscience, 16(10), 1695–1705.

    Article  PubMed  Google Scholar 

  • Shadmehr, R., & Holcomb, H. H. (1997). Neural correlates of motor memory consolidation. Science, 277(5327), 821–825.

    Article  PubMed  Google Scholar 

  • Shidara, M., Kawano, K., Gomi, H., & Kawato, M. (1993). Inverse-dynamics model eye movement control by Purkinje cells in the cerebellum. Nature, 365(6441), 50–52.

    Article  PubMed  Google Scholar 

  • Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning. Cambridge, MA: MIT Press.

    Google Scholar 

  • Tamada, T., Miyauchi, S., Imamizu, H., Yoshioka, T., & Kawato, M. (1999). Cerebro-cerebellar functional connectivity revealed by the laterality index in tool-use learning. Neuroreport, 10(2), 325–331.

    Article  PubMed  Google Scholar 

  • Tankersley, D., Stowe, C. J., & Huettel, S. A. (2007). Altruism is associated with an increased neural response to agency. Nature Neuroscience, 10(2), 150–151.

    Article  PubMed  Google Scholar 

  • Wolpert, D. M., Doya, K., & Kawato, M. (2003). A unifying computational framework for motor control and social interaction. Philosophical Transactions of the Royal Society of London Series B Biological Sciences, 358(1431), 593–602.

    Article  Google Scholar 

  • Wolpert, D. M., Ghahramani, Z., & Jordan, M. I. (1995). An internal model for sensorimotor integration. Science, 269(5232), 1880–1882.

    Article  PubMed  Google Scholar 

  • Wolpert, D. M., & Kawato, M. (1998). Multiple paired forward and inverse models for motor control. Neural Networks, 11, 1317–1329.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Toshinori Yoshioka for developing the software used for the three-dimensional display of multiple brain activities (Figs. 4, 7; Supplemental movie). This MATLAB(R) based software is freely available at: http://www.cns.atr.jp/multi_color.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Imamizu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental movie (MPG 29.1 MB).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imamizu, H., Kawato, M. Brain mechanisms for predictive control by switching internal models: implications for higher-order cognitive functions. Psychological Research 73, 527–544 (2009). https://doi.org/10.1007/s00426-009-0235-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-009-0235-1

Keywords

Navigation