Skip to main content
Log in

The structure of the USP/RXR of Xenos pecki indicates that Strepsiptera are not closely related to Diptera

  • Sequence corner
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

The receptor for the insect molting hormone, ecdysone, is a heterodimer consisting of the Ecdysone Receptor and Ultraspiracle (USP) proteins. The ligand binding domain sequences of arthropod USPs divide into two distinct groups. One group consists of sequences from members of the holometabolous Lepidoptera and Diptera, while the other arthropod sequences group with vertebrate retinoid-X-receptors (RXRs). We therefore wondered whether USP/RXR structure could be used to clarify the contentious phylogenetic position of the order Strepsiptera, which has proposed affinities with either Diptera or Coleoptera. We have cloned and sequenced the USP/RXR from the strepsipteran Xenos pecki. Phylogenetic analyses are not consistent with a close affinity between Strepsiptera and Diptera.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Billas IM, Moulinier L, Rochel N, Moras D (2001) Crystal structure of the ligand-binding domain of the ultraspiracle protein USP, the ortholog of retinoid X receptors in insects. J Biol Chem 276:7465–7474

    Article  Google Scholar 

  • Bonneton F, Zelus D, Iwema T, Robinson-Rechavi M, Laudet V (2003) Rapid divergence of the ecdysone receptor in Diptera and Lepidoptera suggests coevolution between ECR and USP-RXR. Mol Biol Evol 20:541–553

    Article  Google Scholar 

  • Carmean D, Crespi BJ (1995) Do long branches attract flies?. Nature 373:666

    Article  Google Scholar 

  • Chalwatzis N, Baur A, Stetzer E, Kinzelbach R, Zimmermann FK (1995) Strongly expanded 18S rRNA genes correlated with a peculiar morphology in the insect order of Strepsiptera. Zoology 98:115–126

    Google Scholar 

  • Chalwatzis N, Hauf J, van de Peer Y, Kinzelbach R, Zimmermann FK (1996) 18S ribosomal RNA genes of insects: primary structure of the genes and molecular phylogeny of the Holometabola. Ann Entomol Soc Am 89:788–903

    Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  CAS  PubMed  Google Scholar 

  • Clayton GM, Peak-Chew SY, Evans RM, Schwabe JW (2001) The structure of the ultraspiracle ligand-binding domain reveals a nuclear receptor locked in an inactive conformation. Proc Natl Acad Sci USA 98:1549–1554

    Article  Google Scholar 

  • Crowson RA (1960) The phylogeny of Coleoptera. Ann Rev Entomol 5:111–134

    Article  Google Scholar 

  • Crowson RA (1981) The biology of the Coleoptera. Academic Press, London, 802 pp

    Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Google Scholar 

  • Hayward DC, Bastiani MJ, Trueman JWH, Truman JW, Riddiford LM, Ball EE (1999) The sequence of Locusta RXR, homologous to Drosophila Ultraspiracle, and its evolutionary implications. Dev Genes Evol 209:564–571

    Article  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  CAS  PubMed  Google Scholar 

  • Hwang UW, Kim W, Tautz D, Friedrich M (1998) Molecular phylogenetics at the Felsenstein Zone: approaching the Strepsiptera problem using 5.8S and 28S rDNA sequences. Mol Phylogenet Evol 9:470–480

    Article  Google Scholar 

  • Kathirithamby J (1989) Review of the order Strepsiptera. Syst Entomol 14:41–92

    Google Scholar 

  • Kristensen NP (1991) Phylogeny of extant hexapods. In: Naumann ID, Carne PB, Lawrence JF, Nielsen ES, Spradberry JP, Taylor RW, Whitten MJ, Littlejohn MJ (eds) Insects of Australia: a textbook for students and research workers, 2nd edn. Melbourne University Press, Melbourne, pp 125–140

    Google Scholar 

  • Kristensen NP (1999) Phylogeny of endopterygote insects, the most successful lineage of living organisms. Eur J Entomol 96:237–253

    Google Scholar 

  • Kukalova-Peck J (1991) Fossil history and the evolution of hexapod structures. In: Naumann ID, Carne PB, Lawrence JF, Nielsen ES, Spradberry JP, Taylor RW, Whitten MJ, Littlejohn MJ (eds) Insects of Australia: a textbook for students and research workers, 2nd edn. Melbourne University Press, Melbourne, pp 141–179

    Google Scholar 

  • Kukalova-Peck J, Lawrence JF (1993) Evolution of the hind wing in Coleoptera. Can Entomol 125:181–258

    Google Scholar 

  • Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  CAS  PubMed  Google Scholar 

  • Rokas A, Kathirithamby J, Holland PWH (1999) Intron insertion as a phylogenetic character: the engrailed homeobox of Strepsiptera does not indicate affinity with Diptera. Insect Mol Biol 8:527–530

    Article  Google Scholar 

  • Rossi P (1793) Observations sur un nouveau genre d’insecte voisin des Ichneumons. Bull Soc Philomathique 1:49

    Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony (and other methods), version 4.0b10. Sinauer, Sunderland, Mass.

    Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    CAS  PubMed  Google Scholar 

  • Whiting MF (1998) Phylogenetic position of the Strepsiptera: review of molecular and morphological evidence. Int J Insect Morphol Embryol 27:53–60

    Article  Google Scholar 

  • Whiting MF (2002) Phylogeny of the holometabolous insect orders: molecular evidence. Zool Scripta 31:3–15

    Article  Google Scholar 

  • Whiting MF, Wheeler WC (1994) Insect homeotic transformation. Nature 368:696

    Article  Google Scholar 

  • Whiting MF, Carpenter JA, Wheeler QD, Wheeler WC (1997) The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology. Syst Biol 46:1–68

    Google Scholar 

Download references

Acknowledgements

We are grateful to Michael Whiting for supplying the Polistes and Xenos material and for his comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. E. Ball.

Additional information

Edited by D. Tautz

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayward, D.C., Trueman, J.W.H., Bastiani, M.J. et al. The structure of the USP/RXR of Xenos pecki indicates that Strepsiptera are not closely related to Diptera. Dev Genes Evol 215, 213–219 (2005). https://doi.org/10.1007/s00427-004-0461-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-004-0461-x

Keywords

Navigation