Skip to main content

Advertisement

Log in

Analysis of paralogous pontin and reptin gene expression during mouse development

  • Short Communication
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

Evolutionarily conserved from yeast to human, the paralogous DNA helicases Pontin (Pont) and Reptin (Rept) are simultaneously recruited in multi-protein chromatin complexes that function in different aspects of DNA metabolism (transcription, replication and repair). When assayed, the two proteins were found to be essential for viability and to play antagonistic roles, suggesting that the balance of Pont/Rept regulates epigenetic programmes critical for development. Consistent with this, the two helicases are provided in the same embryonic territories during Drosophila development. In Xenopus, while transcribed in the same regions early in embryogenesis, pont and rept adopt significantly different patterns afterwards. Here we report that the two genes follow highly resembling transcription patterns in mouse embryos, with prominent expression in limb buds and branchial arches, organs undergoing mesenchymal–epithelial interactions and in motoneurones from cranial and spinal regions. Thus, simultaneous expression during development appears to constitute another feature of the evolutionary conservation of pont and rept genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Bauer A, Chauvet S, Huber O, Usseglio F, Rothbächer U, Aragnol D, Kemler R, Pradel J (2000) Pontin52 and Reptin52 function as antagonistic regulators of β-catenin signalling activity. EMBO J 19:6121–6130

    Article  PubMed  CAS  Google Scholar 

  • Etard C, Wedlich D, Bauer A, Huber O, Kuhl M (2000) Expression of Xenopus homologs of the beta-catenin binding protein Pontin52. Mech Dev 94:219–222

    Article  PubMed  CAS  Google Scholar 

  • Feng Y, Lee N, Fearon ER (2003) TIP49 regulates beta-catenin-mediated neoplastic transformation and T-cell factor target gene induction via effects on chromatin remodeling. Cancer Res 63:8726–8734

    PubMed  CAS  Google Scholar 

  • Garces A, Livet J, Grillet N, Hendersonn CE, Delapeyriere O (2001) Responsiveness to neurturin of subpopulations of embryonic rat spinal motoneuron does not correlate with expression of GFR alpha 1 or GFR alpha 2. Dev Dyn 220:189–197

    Article  PubMed  CAS  Google Scholar 

  • Holt BF III, Boyes DC, Ellerstrom M, Siefers N, Wiig A, Kauffman S, Grant MR, Dangl JL (2002) An evolutionarily conserved mediator of plant disease resistance gene function is required for normal Arabidopsis development. Dev Cell 2:807–817

    Article  PubMed  Google Scholar 

  • Ikura T, Ogryzko VV, Grigoriev M, Grolsman R, Wang J, Horikoshi M, Scully R, Qin J, Nakatani Y (2000) Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis. Cell 102:463–474

    Article  PubMed  CAS  Google Scholar 

  • Jessel TM (2000) Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat Rev Genet 1:20–29

    Article  PubMed  CAS  Google Scholar 

  • Jonsson ZO, Jha S, Wohlschlegel JA, Dutta A (2004) Rvb1p/Rvb2p recruit Arp5p and assemble a functional Ino80 chromatin remodeling complex. Mol Cell 16:465–477

    Article  PubMed  CAS  Google Scholar 

  • Kanemaki M, Kurokawa Y, Matsu-ura T, Makino Y, Masani A, Okazaki K, Morishita T, Tamura TA (1999) TIP49b, a new RuvB-like DNA helicase, is included in a complex together with another RuvB-like DNA helicase, TIP49a. J Biol Chem 274:22437–22444

    Article  PubMed  CAS  Google Scholar 

  • Kim JH, Kim B, Cai L, Choi HJ, Ohgi KA, Tran C, Chen C, Chung CH, Huber O, Rose DW, Sawyers CL, Rosenfeld MG, Baek SH (2005) Transcriptional regulation of a metastasis suppressor gene by Tip60 and beta-catenin complexes. Nature 434:921–926

    Article  PubMed  CAS  Google Scholar 

  • Kurokawa Y, Kanemaki M, Makino Y, Tamura TA (1999) A notable example of an evolutionary conserved gene: studies on a putative DNA helicase TIP49. DNA Seq 10:37–42

    PubMed  CAS  Google Scholar 

  • Lim CR, Kimata Y, Ohdate H, Kokubo T, Kikuchi N, Horigome T, Kohno K (2000) The Saccharomyces cerevisiae RuvB-like protein, Tih2p, is required for cell cycle progression and RNA polymerase II-directed transcription. J Biol Chem 275:22409–22417

    Article  PubMed  CAS  Google Scholar 

  • Makino Y, Kanemaki M, Kurokawa Y, Koji T, Tamura T (1999) A rat RuvB-like protein, TIP49a, is a germ cell-enriched novel DNA helicase. J Biol Chem 274:15329–15335

    Article  PubMed  CAS  Google Scholar 

  • Mizuguchi G, Shen X, Landry J, Wu WH, Sen S, Wu C (2004) ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science 303:343–348

    Article  PubMed  CAS  Google Scholar 

  • Park J, Wood MA, Cole MD (2002) BAF53 forms distinct nuclear complexes and functions as a critical c-Myc-interacting nuclear cofactor for oncogenic transformation. Mol Cell Biol 22:1307–1316

    Article  PubMed  CAS  Google Scholar 

  • Rottbauer W, Saurin AJ, Lickert H, Shen X, Burns CG, Wo ZG, Kemler R, Kingston R, Wu C, Fishman M (2002) Reptin and Pontin antagonistically regulate heart growth in zebrafish embryos. Cell 111:661–672

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the “Centre National de la Recherche Scientifique” (CNRS) and by grants from “la Ligue Nationale Contre Le Cancer (équipe labellisée La Ligue)” and “l'Association pour la Recherche contre le Cancer” (ARC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Pradel.

Additional information

Communicated by B.G. Herrmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chauvet, S., Usseglio, F., Aragnol, D. et al. Analysis of paralogous pontin and reptin gene expression during mouse development. Dev Genes Evol 215, 575–579 (2005). https://doi.org/10.1007/s00427-005-0011-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-005-0011-1

Keywords

Navigation