Skip to main content
Log in

Stages and other aspects of the embryology of the parthenogenetic Marmorkrebs (Decapoda, Reptantia, Astacida)

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

The early development of the parthenogenetic Marmorkrebs (marbled crayfish) is described with respect to external morphology, cell lineage, and segment formation. Due to its parthenogenetic reproduction mode, the question arises whether or not the marbled crayfish is a suitable model organism for developmental approaches. To address this question, we describe several aspects of the embryonic development until hatching. We establish ten stages based on characteristic external changes in the living eggs such as blastoderm formation, gastrulation process, formation and differentiation of the naupliar and post-naupliar segments, limb bud differentiation, and eye differentiation. The study of the post-naupliar cell division patterns, segment formation, and engrailed expression reveals distinct similarities to that of other freshwater crayfish. On this basis, we evaluate the possibility of a generalization of ontogenetic processes in the Marmorkrebs for either freshwater crayfish or other crustacean developmental systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abzhanov A, Kaufman TC (2000a) Embryonic expression patterns of the Hox gene of the crayfish Procambarus clarkii (Crustacea, Decapoda). Evol Dev 2:271–283

    Article  PubMed  CAS  Google Scholar 

  • Abzhanov A, Kaufman TC (2000b) Evolution of distinct expression patterns for engrailed paralogues in higher crustaceans (Malacostraca). Dev Genes Evol 210:439–506

    Google Scholar 

  • Ahyong ST, O’Meally D (2004) Phylogeny of the Decapoda Reptantia: resolution using three molecular loci and morphology. Raffles Bull Zool 52:673–693

    Google Scholar 

  • Bentley D, Keshishian H, Shankland M, Toroian-Raymond A (1979) Quantitative staging of embryonic development of the grasshopper, Schistocerca nitens. J Embryol Exp Morphol 54:47–74

    PubMed  CAS  Google Scholar 

  • Braband A, Kawai T, Scholtz G (2006) The phylogenetic position of the East Asian freshwater crayfish Cambaroides within the Northern Hemisphere Astacoidea (Crustacea, Decapoda, Astacida) based on molecular data. J Zool Syst Evol Res (in press)

  • Browne WE, Price AL, Gerberding M, Patel NH (2005) Stages of embryonic development in the amphipod crustacean, Parhyale hawaiensis. Genesis 42:124–149

    Article  PubMed  Google Scholar 

  • Celada JD, de Paz P, Gaudioso VR, Fernández R (1987) Embryonic development of the freshwater crayfish (Pacifastacus leniusculus Dana): a scanning electron microscopic study. Anat Rec 219:304–310

    Article  PubMed  CAS  Google Scholar 

  • Celada JD, Carral JM, Gonzales J (1991) A study on the identification and chronology of the embryonic stages of the freshwater crayfish Austropotamobius pallipes (Lereboullet, 1858). Crustaceana 61:225–232

    Article  Google Scholar 

  • Crandall KA, Harris DJ, Fetzner JW (2000) The monophyletic origin of freshwater crayfish estimated from nuclear and mitochondrial DNA sequences. Proc R Soc Lond B 267:1679–1686

    Article  CAS  Google Scholar 

  • Dixon CJ, Ahyong ST, Schram FR (2003) A new hypothesis of decapod phylogeny. Crustaceana 76:935–975

    Article  Google Scholar 

  • Dohle W, Scholtz G (1988) Clonal analysis of the crustacean segment: the discordance between genealogical and segmental borders. Development 104(Suppl):147–160

    Google Scholar 

  • Dohle W, Gerberding M, Hejnol A, Scholtz G (2004) Cell lineage, segment differentiation, and gene expression in crustaceans. In: Scholtz G (ed) Crustacean issues 15: evolutionary developmental biology of Crustacea. Lisse, Balkema, pp 95–133

    Google Scholar 

  • Fioroni P (1969) Zum embryonalen und postembryonalen Dotteraufbau des Flusskrebses (Astacus; Crustacea, Malacostraca, Decapoda). Rev Suisse Zool 47:919–946

    Google Scholar 

  • Fioroni P (1970) Am dotteraufschluβ beteiligte Organe und Zelltypen bei höheren Krebsen; der Versuch zu einer einheitlichen Terminologie. Zool Jb Anat 87:481–522

    Google Scholar 

  • Fulinski B (1908) Beiträge zur embryonalen Entwicklung des Fluβkrebses. Zool Anz 33:20–28

    Google Scholar 

  • García-Guerrero M, Hendrickx ME, Villarreal H (2003) Description of the embryonic development of Cherax quadricarinatus (von Martens, 1868) (Decapoda, Parastacidae), based on the staging method. Crustaceana 76:269–280

    Article  Google Scholar 

  • Gerberding M (1997) Germ band formation and early neurogenesis of Leptodora kindti (Cladocera): first evidence for neuroblasts in the entomostracan crustaceans. Invertebr Reprod Dev 32:63–73

    Google Scholar 

  • Harlioğlu MM (2002) The first report on the occurrence of twins in a freshwater crayfish, Pacifastacus leniusculus (Decapoda, Astacoidea). Folia Biol (Krakow) 50:215–216

    Google Scholar 

  • Harzsch S, Benton J, Beltz BS (2000) An unusual case of a mutant lobster embryo with double brain and double ventral nerve cord. Arthropod Struct Dev 29:95–99

    Article  PubMed  CAS  Google Scholar 

  • Hejnol A, Scholtz G (2004) Clonal analysis of distal-less and engrailed expression patterns during early morphogenesis of uniramous and biramous crustacean limbs. Dev Genes Evol 214:473–485

    PubMed  CAS  Google Scholar 

  • Helluy SM, Beltz BS (1991) Embryonic development of the American Lobster (Homarus americanus): quantitative staging and characterization of an embryonic molt cycle. Biol Bull 180:355–371

    Article  Google Scholar 

  • Herrick FH (1895) The American lobster: a study of its habits and development. Bull US Fish Comm 15:1–252(pl 54)

    Google Scholar 

  • Huxley TH (1880) The crayfish: an introduction in the study of zoology. C. Kegan Paul & Co., London

    Google Scholar 

  • Jara CG, Palacios VL (2001) Occurrence of conjoined twins in Aegla abtao Schmitt, 1942 (Decapoda, Anomura, Aeglidae). Crustaceana 74:1059–1065

    Article  Google Scholar 

  • Lereboullet A (1862) Recherches d’embryologie comparée sur le développement du brochet, de la perche et de l’écrevisse. Mém Acad Sci Inst Fr 17:447–805

    Google Scholar 

  • Manton SM (1928) On the embryology of a mysid crustacean Hemimysis lamornae. Philos Trans R Soc Lond B 216:363–463

    Article  Google Scholar 

  • Manton SM (1934) On the embryology of the crustacean Nebalia bipes. Philos Trans R Soc Lond B 498:163–238

    Article  Google Scholar 

  • Olesen J, Richter S, Scholtz G (2003) On the ontogeny of Leptodora kindtii (Crustacea, Branchiopoda, Cladocera), with notes on the phylogeny of the Cladocera. J Morphol 256:235–259

    Article  PubMed  Google Scholar 

  • Patel NH, Kornberg TB, Goodman CS (1989a) Expression of engrailed during segmentation in grasshopper and crayfish. Development 107:201–212

    PubMed  CAS  Google Scholar 

  • Patel NH, Martin-Blanco E, Coleman KG, Poole SJ, Ellis MC, Kornberg TB, Goodman CS (1989b) Expression of engrailed proteins in arthropods, annelids, and chordates. Cell 58:955–968

    Article  PubMed  CAS  Google Scholar 

  • Porter ML, Pérez-Losada M, Crandall KA (2005) Model-based multi-locus estimation of decapod phylogeny and divergence times. Mol Phylogenet Evol (in press)

  • Rathke H (1829) Untersuchungen über die Bildung und Entwicklung des Flusskrebses. Voss, Leipzig

    Google Scholar 

  • Reichenbach H (1888) Zur Embryonalentwicklung des Fluβkrebses. Abh Senckenb Naturforsch Ges 14:1–137

    Google Scholar 

  • Sandeman R, Sandeman D (1991) Stages in the development of the embryo of the fresh-water crayfish Cherax destructor. Dev Biol 200:27–37

    Google Scholar 

  • Sars GO (1873) Om en dimorph udvikling samt generationsvexel hos Leptodora. Forh Videnskapsselsk Kristiania 1–15

  • Scholtz G (1992) Cell lineage studies in the crayfish Cherax destructor (Crustacea, Decapoda): germ band formation, segmentation, and early neurogenesis. Roux’s Arch Dev Biol 202:36–48

    Article  Google Scholar 

  • Scholtz G (1993) Teloblasts in decapod embryos: an embryonic character reveals the monophyletic origin of freshwater crayfishes (Crustacea, Decapoda). Zool Anz 230:45–54

    Google Scholar 

  • Scholtz G (1995) Expression of the engrailed gene reveals nine putative segment-anlagen in the embryonic pleon of the freshwater crayfish Cherax destructor (Crustacea, Malacostraca, Decapoda). Biol Bull 188:157–165

    Article  Google Scholar 

  • Scholtz G (1995) Ursprung und Evolution der Fluβkrebse (Crustacea, Astacida). Sber Ges Naturf Freund Berlin 34:93–115

    Google Scholar 

  • Scholtz G (1997) Cleavage, germ band formation and head segmentation: the ground pattern of the Euarthropoda. In: Fortey RA, Thomas RH (eds) Arthropod relationships. Chapman and Hall, London, pp 317–332

    Google Scholar 

  • Scholtz G (2002) Phylogeny and evolution. In: DM Holdich (ed) Biology of freshwater crayfish. Blackwell Science, Oxford, pp 30–52

    Google Scholar 

  • Scholtz G (2005) Homology and ontogeny: pattern and process in comparative developmental biology. Theory Biosci 124:121–143.

    Google Scholar 

  • Scholtz G, Richter S (1995) Phylogenetic systematics of the reptantian Decapoda (Crustacea, Malacostraca). Zool J Linn Soc 113:289–328

    Article  Google Scholar 

  • Scholtz G, Dohle W (1996) Cell lineage and cell fate in crustacean embryos—a comparative approach. Int J Dev Biol 40:211–220

    PubMed  CAS  Google Scholar 

  • Scholtz G, Kawai T (2002) Aspects of embryonic and postembryonic development of the Japanese freshwater crayfish Cambaroides japonicus (Crustacea, Decapoda) including a hypothesis on the evolution of maternal care in the Astacida. Acta Zool (Stockh.) 83:203–212

    Article  Google Scholar 

  • Scholtz G, Dohle W, Sandeman RE, Richter S (1993) Expression of engrailed can be lost and regained in cells of one clone in crustacean embryos. Int J Dev Biol 37:299–304

    PubMed  CAS  Google Scholar 

  • Scholtz G, Braband A, Tolley L, Reimann A, Mittmann B, Lukhaup C, Steuerwald F, Vogt G (2003) Parthenogenesis in an outsider crayfish. Nature 421:806

    Article  PubMed  CAS  Google Scholar 

  • Schram FR (2001) Phylogeny of decapods: moving toward a consensus. Hydrobiologia 449:1–20

    Article  Google Scholar 

  • Seitz R, Vilpoux K, Hopp U, Harzsch S, Maier G (2005) Ontogeny of the Marmorkrebs (marbled crayfish): a parthenogenetic crayfish with unknown origin and phylogenetic position. J Exp Zool 303A:393–405

    Article  Google Scholar 

  • Shiino SM (1942) Studies on the embryology of Squilla oratoria de Haan. Mem Coll Sci 17:77–174

    Google Scholar 

  • Shiino SM (1968) I. Crustacea. In: Kumé M, Dan K (eds) Invertebrate embryology. Nolit, Belgrade,Yugoslavia 10, p 333–388

    Google Scholar 

  • Ungerer P, Wolff C (2005) External morphology of limb development in the amphipod Orchestia cavimana (Crustacea, Malacostraca, Peracarida). Zoomorphology 124:89–99

    Article  Google Scholar 

  • Vogt G, Tolley L (2004) Brood care in freshwater crayfish and relationship with the offspring’s sensory deficiencies. J Morphol 262:566–582

    Article  PubMed  Google Scholar 

  • Vogt G, Tolley L, Scholtz G (2004) Life stages and reproductive components of the Marmorkrebs (marbled crayfish), the first parthenogenetic decapod crustacean. J Morphol 261:286–311

    Article  PubMed  Google Scholar 

  • Weygoldt P (1961) Beitrag zur Kenntnis der Ontogenie der Dekapoden: Embryologische Untersuchungen an Palaemonetes varians (Leach). Zool Jb Anat 79:223–270

    Google Scholar 

  • White RB, Lamey TM, Ziman M, Koenders A (2005) Isolation and expression analysis of a Pax group III gene from the crustacean Cherax destructor. Dev Genes Evol 215:306–312

    Article  PubMed  CAS  Google Scholar 

  • Zehnder R (1934) Über die Embryonalentwicklung des Flusskrebses. Acta Zool 15:261–408

    Article  Google Scholar 

Download references

Acknowledgements

We are very grateful to Gabriele Drescher and to Wilfrid Bleiss, for the technical support using the SEM. We thank Greg Edgecombe for improving the English of the manuscript. We also thank Julia Pint for providing the photographs in Fig. 5h,i.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Scholtz.

Additional information

Communicated by S. Roth

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alwes, F., Scholtz, G. Stages and other aspects of the embryology of the parthenogenetic Marmorkrebs (Decapoda, Reptantia, Astacida). Dev Genes Evol 216, 169–184 (2006). https://doi.org/10.1007/s00427-005-0041-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-005-0041-8

Keywords

Navigation