Skip to main content
Log in

ParaHox gene expression in the polychaete annelid Capitella sp. I

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

Hox and ParaHox genes are transcriptional regulators vital for many aspects of embryonic development in bilaterian animals and are considered to have originated from one ancestral proto-Hox/ParaHox cluster. Hox genes are clustered in the genome of both protostomes and deuterostomes, and there is a specific relationship between the position of a gene in the cluster and the position of its expression along the animal body axis (colinearity). It is not clear whether the ParaHox genes Gsx, Xlox, and, Cdx generally exhibit a similar phenomenon since developmental expression for all three ParaHox genes within a single species has not yet been described for any protostome animal. Here we show the spatial and temporal localization for all three ParaHox genes in the polychaete Capitella sp. I, a member of one of the morphologically most diverse and understudied groups within the Metazoa, the Lophotrochozoa. Our data demonstrate that although both CapI-Xlox and CapI-Cdx are regionally expressed in the gut, the three Capitella sp. I ParaHox genes as a group do not perfectly fit predictions of temporal or spatial colinearity. Instead, there is a conservation of expression across species associated with development of particular tissues, and the relative order of initiation of ParaHox gene expression likely reflects the relative order of species-specific tissue development during ontogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Brooke NM, Garcia-Fernandez J, Holland PWH (1998) The ParaHox gene cluster is an evolutionary sister of the Hox gene cluster. Nature 392:920–922

    Article  PubMed  CAS  Google Scholar 

  • Chawengsaksophak K, Beck F (1996) Chromosomal location of cdx2, a murine homologue of the Drosophila gene caudal, to mouse chromosome 5. Genomics 34:270–271

    Article  PubMed  CAS  Google Scholar 

  • Copf T, Schroder R, Averof M (2004) Ancestral role of caudal genes in axis elongation and segmentation. PNAS 101:17711–17715

    Article  PubMed  CAS  Google Scholar 

  • de Rosa R, Grenier JK, Andreeva T, Cook CE, Adoutte A, Akam M, Carroll S, Balavoine G (1999) Hox genes in brachiopods and priapulids and protostome evolution. Nature 399:772–776

    Article  PubMed  CAS  Google Scholar 

  • de Rosa R, Prud’homme B, Balavoine G (2005) Caudal and even-skipped in the annelid Platynereis dumerilii and ancestry of posterior growth. Evol Dev 7:574–587

    Article  PubMed  Google Scholar 

  • Duprey P, Chowdhury K, Dressler G, Balling R, Simon D, Guenet J, Gruss P (1988) A mouse gene homologous to the Drosophila gene caudal is expressed in epithelial cells from the embryonic intestine. Genes Dev 12A:1647–1654

    Article  Google Scholar 

  • Eisig H (1899) Zur Entwicklungsgeschichte der Capitelliden. Mitt Zool Stn Neapel 13:1–292

    Google Scholar 

  • Ferrier DEK, Holland PWH (2001) Sipunculan ParaHox genes. Evol Dev 3:263–270

    Article  PubMed  CAS  Google Scholar 

  • Ferrier DEK, Holland PWH (2002) Ciona intestinalis ParaHox genes: evolution of Hox/ParaHox cluster integrity, developmental mode, and temporal colinearity. Mol Phylogenet Evol 24:412–417

    Article  PubMed  CAS  Google Scholar 

  • Fiedorek F, Kay E (1995) Mapping of the insulin promoter factor 1 gene (IPF1) to distal mouse chromosome 5. Genomics 28:581–584

    Article  PubMed  CAS  Google Scholar 

  • Gamer L, Wright C (1993) Murine Cdx-4 bears striking similarities to the Drosophila caudal gene in its homeodomain sequence and early expression pattern. Mech Dev 43:71–81

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Fernandez J (2005) Hox, ParaHox, ProtoHox: facts and guesses. Heredity 94:145–152

    Article  PubMed  CAS  Google Scholar 

  • Gont L, Steinbeisser H, Blumberg B, de Robertis E (1993) Tail formation as a continuation of gastrulation: the multiple cell populations of the Xenopus tailbud derive from the late blastopore lip. Development 119:991–1004

    PubMed  CAS  Google Scholar 

  • Holland PWH (2001) Beyond the Hox: how widespread is homeobox gene clustering? J Anat 199:13–23

    Article  PubMed  CAS  Google Scholar 

  • Hsieh-Li HM, Witte DP, Szucsk JC, Weinstein M, Li H, Potter S (1995) Gsh-2, a murine homeobox gene expressed in the developing brain. Mech Dev 50:177–186

    Article  PubMed  CAS  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  PubMed  CAS  Google Scholar 

  • Hwang S, Wu J, Chen C, Hui C, Chen C (2003) Novel pattern of AtXlox gene expression in starfish Archaster typicus embryos. Dev Growth Differ 45:85–93

    Article  PubMed  CAS  Google Scholar 

  • Inoue H, Riggs A, Tanizawa Y, Ueda K, Kuwano A, Liu L, Donis-Keller H, Permutt M (1996) Isolation, characterization, and chromosomal mapping of the human insulin promoter factor 1 (IPF-1) gene. Diabetes 45:789–794

    Article  PubMed  CAS  Google Scholar 

  • Iwanoff PP (1928) Die Entwicklung der Larvalsegmente bei den Anneliden. Z Morphol Okol Tiere 10:62–161

    Article  Google Scholar 

  • Kourakis MJ, Martindale MQ (2000) Combined-method phylogenetic analysis of Hox and ParaHox genes of the Metazoa. J Exp Zool 288:175–191

    Article  PubMed  CAS  Google Scholar 

  • Le Gouar M, Lartillot N, Adoutte A, Vervoort M (2003) The expression of a caudal homologue in a mollusc, Patella vulgata. Gene Expr Patterns 3:35–37

    Article  PubMed  Google Scholar 

  • Macdonald P, Struhl G (1986) A molecular gradient in early Drosophila embryos and its role in specifying the body pattern. Nature 324:537–545

    Article  PubMed  CAS  Google Scholar 

  • Marom K, Shapira E, Fainsod A (1997) The chicken caudal genes establish an anterior–posterior gradient by partially overlapping temporal and spatial patterns of expression. Mech Dev 64:41–52

    Article  PubMed  CAS  Google Scholar 

  • Matsuo K, Yoshida H, Shimizu T (2005) Differential expression of caudal and dorsal genes in the teloblast lineages of the oligochaete annelid Tubifex tubifex. Dev Genes Evol 215:238–247

    Article  PubMed  CAS  Google Scholar 

  • McGinnis W, Krumlauf R (1992) Homeobox genes and axial patterning. Cell 68:283–302

    Article  PubMed  CAS  Google Scholar 

  • Ohlsson H, Karlsson K, Edlund T (1993) IPF1, a homeodomain-containing transactivator of the insulin gene. EMBO J 12:4251–4259

    PubMed  CAS  Google Scholar 

  • Pillemer G, Epstein M, Blumberg B, Yisraeli J, De Robertis E, Steinbeisser H, Fainsod A (1998) Nested expression and sequential downregulation of the Xenopus caudal genes along the anterior–posterior axis. Mech Dev 71:193–196

    Article  PubMed  CAS  Google Scholar 

  • Pollard S, Holland PWH (2000) Evidence for 14 homeobox clusters in human genome ancestry. Curr Biol 10:1059–1062

    Article  PubMed  CAS  Google Scholar 

  • Reece-Hoyes J, Keenan I, Isaacs H (2002) Cloning and expression of the Cdx family from the frog Xenopus tropicalis. Dev Dyn 223:134–140

    Article  PubMed  CAS  Google Scholar 

  • Ruvkun G, Hobert O (1998) The taxonomy of developmental control in Caenorhabditis elegans. Science 282:2033–2041

    Article  PubMed  CAS  Google Scholar 

  • Seaver EC, Kaneshige LM (in press) Expression of ‘segmentation’ genes during larval and juvenile development in the polychaetes Capitella sp. I and H. elegans. Dev Biol

  • Seaver EC, Thamm K, Hill SD (2005) Growth patterns during segmentation in the two polychaete annelids, Capitella sp. I and Hydroides elegans: comparisons at distinct life history stages. Evol Dev 7:312–326

    Article  PubMed  Google Scholar 

  • Subramanian V, Meyer B, Gruss P (1995) Disruption of the murine homeobox gene Cdx1 affects axial skeletal identities by altering the mesodermal expression domains of Hox genes. Cell 83:641–653

    Article  PubMed  CAS  Google Scholar 

  • Swofford DL (2002) PAUP* 4.0: phylogenetic analysis using parsimony (*and other methods). Sinauer, Sunderland, MA

  • Urbach R, Technau G (2003) Molecular markers for identified neuroblasts in the developing brain of Drosophila. Development 130:3621–3637

    Article  PubMed  CAS  Google Scholar 

  • Wedeen CJ, Shankland M (1997) Mesoderm is required for the formation of a segmented endodermal cell layer in the leech Helobdella. Dev Biol 191:202–214

    Article  PubMed  CAS  Google Scholar 

  • Weiss JB, Von Ohlen T, Mellerick DM, Dressler G, Doe CQ, Scott MP (1998) Dorsoventral patterning in the Drosophila central nervous system: the intermediate neuroblasts defective homeobox gene specifies intermediate column identity. Genes Dev 12:3591–3602

    PubMed  CAS  Google Scholar 

  • Wright C, Schnegelsberg P, De Roberts EM (1989) XlHbox 8: a novel Xenopus homeo protein restricted to a narrow band of endoderm. Development 105:787–794

    PubMed  CAS  Google Scholar 

  • Wu LH, Lengyel JA (1998) Role of caudal in hindgut specification and gastrulation suggests homology between Drosophila amnioproctodeal invagination and vertebrate blastopore. Development 125:2433–2442

    PubMed  CAS  Google Scholar 

  • Wysocka-Diller JW, Aisemberg GO, Macagno ER (1995) A novel homeobox cluster expressed in repeated structures of the midgut. Dev Biol 171:439–447

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NSF (IBN00-94925). We are grateful to members of Kewalo Marine Lab for discussions and comments on the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elaine C. Seaver.

Additional information

Communicated by D.A. Weisblat

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fröbius, A.C., Seaver, E.C. ParaHox gene expression in the polychaete annelid Capitella sp. I. Dev Genes Evol 216, 81–88 (2006). https://doi.org/10.1007/s00427-005-0049-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-005-0049-0

Keywords

Navigation