Skip to main content
Log in

Characterization of LEAFY COTYLEDON1-LIKE gene in Helianthus annuus and its relationship with zygotic and somatic embryogenesis

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

The Helianthus annuus LEAFY COTYLEDON1-LIKE (HaL1L) gene encodes a heme-activated protein 3 subunit of the CCAAT box-binding factor. The phylogenetic analysis indicates that HaL1L is closely related to LEAFY COTYLEDON1 (LEC1)-type of Arabidopsis thaliana. In particular, the peptide results homologous to the LEC1-LIKE gene of A. thaliana, with which it shares a high amino acid sequence identity (56%). HaL1L transcripts are accumulated primarily at an early stage of sunflower embryogenesis. High levels of HaL1L messenger RNA (mRNA) have been detected in the developing embryo proper, suspensor, endosperm, integument, and integumentary tapetum cells, while in unfertilized ovules, HaL1L mRNA was present at rather low levels. In an attempt to examine the involvement of HaL1L on somatic embryogenesis, a somaclonal variant of H. annuus × H. tuberosus (EMB-2) that produces ectopic embryo- and shoot-like structures, arranged in clusters along leaf veins, was used. We found that the epiphyllous proliferation of ectopic embryos on EMB-2 leaves was associated to HaL1L mRNA accumulation. The detection of HaL1L transcripts was evident in somatic embryos at the heart- and early cotyledon-stage. On the contrary, no signal related to HaL1L transcript accumulation was observed in EMB-2 leaves characterized by the presence of shoot-like structures. Together, these results support the conclusion that the transcription of the HaL1L gene is maintained both in zygotic and in somatic embryogenesis. In addition, the ectopic accumulation of HaL1L mRNA in parenchymal cells around the vascular bundles of epiphyllous leaves opens the possibility that HaL1L could also be involved in switching somatic cell fate towards embryogenic competence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aloni R (1987) Differentiation of vascular tissues. Annu Rev Plant Physiol 38:179–204

    Article  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  Google Scholar 

  • Bellorini M, Lee DK, Dantonel JC, Zemzoumi K, Roeder RG, Tora L, Mantovani R (1997) CCAAT binding NF-Y-TBP interactions: NF-YB and NF-YC require short domains adjacent to their histone fold motifs for association with TBP basic residues. Nucleic Acids Res 25:2174–2181

    Article  CAS  PubMed  Google Scholar 

  • Bolognese F, Imbriano C, Caretti G, Mantovani R (2000) Cloning and characterization of the histone-fold proteins YBL1 and YCL1. Nucleic Acids Res 28:3830–3838

    Article  CAS  PubMed  Google Scholar 

  • Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, Zhang L, Hattori J, Liu C-M, van Lammeren AAM, Miki BLA, Custers JBM, van Lookeren Campagne MM (2002) Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 14:1737–1749

    Article  CAS  PubMed  Google Scholar 

  • Cañas LA, Busscher M, Angenent GC, Beltrán J-P, van Tunen AJ (1994) Nuclear localization of petunia MADS box protein FBP1. Plant J 6:597–604

    Article  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  CAS  PubMed  Google Scholar 

  • Chugh A, Khurama P (2002) Gene expression during somatic embryogenesis—recent advances. Curr Sci 83:715–730

    CAS  Google Scholar 

  • Dickinson TA (1978) Epiphylly in angiosperms. Bot Rev 44:181–232

    Article  Google Scholar 

  • Di Laurenzio L, Wysocka-Diller J, Malamy JE, Pysh L, Helariutta Y, Freshour G, Hahn MG, Feldmann KA, Benfey PN (1996) The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. Cell 86:423–433

    Article  PubMed  Google Scholar 

  • Fambrini M, Cionini G, Pugliesi C (1997) Acquisition of high embryogenic potential in regenerated plants of Helianthus annuus × H. tuberosus. Plant Cell Tissue Organ Cult 51:103–110

    Article  CAS  Google Scholar 

  • Fambrini M, Cionini G, Bianchi R, Pugliesi C (2000) Epiphylly in a variant of Helianthus annuus × H. tuberosus induced by in vitro tissue culture. Int J Plant Sci 161:13–22

    Article  PubMed  Google Scholar 

  • Fambrini M, Fisichella M, Pugliesi C (2001) Enhanced morphogenetic potential from in vitro regenerated plants of genus Helianthus: an overview. Recent Res Dev Plant Biol 1:35–54

    Google Scholar 

  • Fambrini M, Cionini G, Conti A, Michelotti V, Pugliesi C (2003) Origin and development in vitro of shoot buds and somatic embryos from intact roots of Helianthus annuus × H. tuberosus. Ann Bot 92:145–151

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Finkelstein RR, Lynch TJ (2000) The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell 12:599–609

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein RR, Wang ML, Lynch TJ, Rao S, Goodman HM (1998) The Arabidopsis abscisic acid response locus ABI4 encodes an APETALA2 domain protein. Plant Cell 10:1043–1054

    Article  CAS  PubMed  Google Scholar 

  • Forino LMC, Andreucci AC, Giraldi E, Tagliasacchi AM (2000) Cytohistochemical analysis of Malus domestica Borkh. seeds from shedding and nonshedding fruits. Int J Plant Sci 161:463–472

    Article  PubMed  Google Scholar 

  • Fujiwara T, Nambara E, Yamagishi K, Goto DB, Naito S (2002) Storage proteins. In: Somerville CR, Meyerowitz EM (eds) The Arabidopsis book. American Society of Plant Biologists, Rockville, DOI/10.1199/tab.0020, http://www.aspb.org/publications/arabidopsis/

  • Gaj MD, Zhang S, Harada JJ, Lemaux PG (2005) Leafy cotyledon genes are essential for induction of somatic embryogenesis of Arabidopsis. Planta 222:977–988. DOI/10.1007/s00425-005-0041-y

    Article  CAS  PubMed  Google Scholar 

  • Giraudat J, Hauge BM, Valon C, Smalle J, Parcy F, Goodman HM (1992) Isolation of the Arabidopsis ABI3 gene by positional cloning. Plant Cell 4:1251–1261

    Article  CAS  PubMed  Google Scholar 

  • Goldberg RB, de Paiva G, Yadegary R (1994) Plant embryogenesis: zygote to seed. Science 266:605–614

    Article  CAS  PubMed  Google Scholar 

  • Gusmaroli G, Tonelli C, Mantovani R (2001) Regulation of the CCAAT-binding NF-Y subunits in Arabidopsis thaliana. Gene 264:173–185

    Article  CAS  PubMed  Google Scholar 

  • Harada JJ (2001) Role of Arabidopsis LEAFY COTYLEDON genes in seed development. J Plant Physiol 158:405–409

    Article  CAS  Google Scholar 

  • Helariutta Y, Fukaki H, Wysocka-Diller J, Nakajima K, Jung K, Sena J, Hauser MT, Benfey PN (2000) The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. Cell 101:555–567

    Article  CAS  PubMed  Google Scholar 

  • Jürgens G (2001) Apical-basal pattern formation in Arabidopsis embryogenesis. EMBO J 20:3609–3616

    Article  PubMed  Google Scholar 

  • Kagaya Y, Toyoshima R, Okada R, Usai H, Yamamoto A, Hattori T (2005) LEAFY COTYLEDON1 controls seed storage protein genes through its regulation of FUSCA3 and ABSCISIC ACID INSENSITIVE3. Plant Cell Physiol 46:399–406

    Article  CAS  PubMed  Google Scholar 

  • Koltunow AM, Grossniklaus U (2003) Apomixis: a developmental perspective. Annu Rev Plant Biol 54:547–574

    Article  CAS  PubMed  Google Scholar 

  • Konar RN, Thomas E, Street HE (1972) Origin and structure of embryoids arising from epidermal cells of the stem of Ranunculus sceleratus L. J Cell Sci 11:77–93

    CAS  PubMed  Google Scholar 

  • Kwong RM, Bui AQ, Lee H, Kwong LW, Fisher RL, Goldberg RB, Harada JJ (2003) LEAFY COTYLEDON1 LIKE defines a class of regulators essential for embryo development. Plant Cell 15:5–18

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Fischer RL, Goldberg RB, Harada JJ (2003) Arabidopsis LEAFY COTYLEDON1 represents a functionally specialized subunit of the CCAAT binding transcription factor. Proc Natl Acad Sci U S A 100:2152–2156

    Article  CAS  PubMed  Google Scholar 

  • Long JA, Moan EI, Medford JI, Barton MK (1996) A member of the KNOTTED class of homeodomain protein encoded by STM gene of Arabidopsis. Nature 379:66–69

    Article  CAS  PubMed  Google Scholar 

  • Lotan T, Ohto M, Matsudaira Yee K, West MAL, Lo R, Kwong RW, Yamagishi K, Fisher RL, Goldberg RB, Harada JJ (1998) Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell 93:1195–1205

    Article  CAS  PubMed  Google Scholar 

  • Luger K, Rechsteiner TJ, Flaus AJ, Waye MMY, Richmond TJ (1997) Characterization of nucleosome core particles containing histone proteins made in bacteria. J Mol Biol 272:301–311

    Article  CAS  PubMed  Google Scholar 

  • Mantovani R (1999) The molecular biology of the CCAAT-binding factor NF-Y. Gene 239:15–27

    Article  CAS  PubMed  Google Scholar 

  • Mayer KFX, Schoof H, Haecker A, Lenhard M, Jürgens G, Laux T (1998) Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95:805–815

    Article  CAS  PubMed  Google Scholar 

  • Mazhar H, Quayle R, Fido RJ, Stobart AK, Napier JA, Shewry PR (1998) Synthesis of storage reserves in developing seeds of sunflower. Phytochemistry 48:429–432

    Article  CAS  Google Scholar 

  • Michelotti V (2003) Epiphylly in an interspecific hybrid of Helianthus annuus × H. tuberosus: expression analysis of a homeotic gene and cellular distribution of cytokinins. Thesis, University of Pisa

  • Mordhorst AP, Toonen MAJ, de Vries SC (1997) Plant embryogenesis. Crit Rev Plant Sci 16:535–576

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Newcomb W (1973) The development of the embryo sac of sunflower Helianthus annuus after fertilization. Can J Bot 51:879–890

    Google Scholar 

  • Schmidt EDL, Guzzo F, Toonen MAJ, de Vries SC (1997) A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development 124:2049–2062

    CAS  PubMed  Google Scholar 

  • Sinha S, Kim IS, Sohn K-J, de Crombrugghe B, Maity SN (1996) Three classes of mutations in the A subunit of the CCAAT-binding factor CBF delineate functional domains involved in the three-step assembly of the CBF-DNA complex. Mol Cell Biol 16:328–337

    CAS  PubMed  Google Scholar 

  • Stone SL, Kwong LW, Matsudaira Yee K, Pelletier J, Lepiniec L, Fischer RL, Goldberg RB, Harada JJ (2001) LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development. Proc Natl Acad Sci U S A 98:11806–11811

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  Google Scholar 

  • Tucker MR, Araujo A-CG, Paech NA, Hecht V, Schmidt EDL, Rossell J-B, de Vries SC, Koltunow AMG (2003) Sexual and apomictic reproduction in Hieracium subgenus Pilosella are closely interrelated developmental pathways. Plant Cell 15:1524–1537

    Article  CAS  PubMed  Google Scholar 

  • West MA, Harada JJ (1993) Embryogenesis in higher plants: an overview. Plant Cell 5:1361–1369

    Article  PubMed  Google Scholar 

  • Yazawa K, Takahata K, Kamada H (2004) Isolation of the gene encoding carrot leafy cotyledon1 and expression analysis during somatic and zygotic embryogenesis. Plant Physiol Biochem 42:215–223

    Article  CAS  PubMed  Google Scholar 

  • Zemzoumi K, Frontini M, Bellorini M, Mantovani R (1999) NF-Y histone fold α1 helices help impart CCAAT specificity. J Mol Biol 286:327–337

    Article  CAS  PubMed  Google Scholar 

  • Zimmerman JL (1993) Somatic embryogenesis: a model for early development in higher plants. Plant Cell 5:1411–1423

    Article  PubMed  Google Scholar 

  • Zuo J, Niu Q-W, Frugis G, Chua N-H (2002) The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J 30:349–359

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Progetti di Ricerca di Rilevante Interesse Nazionale 2004–2005 and from Scuola Normale Superiore to M. Salvini.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Pugliesi.

Additional information

Communicated by G. Jürgens

Electronic supplementary materials

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fambrini, M., Durante, C., Cionini, G. et al. Characterization of LEAFY COTYLEDON1-LIKE gene in Helianthus annuus and its relationship with zygotic and somatic embryogenesis. Dev Genes Evol 216, 253–264 (2006). https://doi.org/10.1007/s00427-005-0050-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-005-0050-7

Keywords

Navigation