Skip to main content
Log in

Functional conservation of zinc-finger homeodomain gene zfh1/SIP1 in Drosophila heart development

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

Comparative genetic studies of diverse animal model systems have revealed that similar developmental mechanisms operate across the Metazoa. In many cases, the genes from one organism can functionally replace homologues in other phyla, a result consistent with a high degree of evolutionarily conserved gene function. We investigated functional conservation among the Drosophila zinc-finger homeodomain protein 1 (zfh1) and its mouse functional homologue Smad-interacting protein 1 (SIP1). Northern blot analyses of SIP1 expression patterns detected three novel variants (8.3, 2.7, and 1.9 kb) in addition to the previously described 5.3 kb SIP1 transcript. The two shorter novel SIP1 transcripts were encountered only in developing embryos and both lacked zinc-finger clusters or homeodomain regions. The SIP1 transcripts showed complex embryonic expression patterns consistent with that observed for Drosophila zfh1. They were highly expressed in the developing nervous systems and in a number of mesoderm-derived tissues including lungs, heart, developing myotomes, skeletal muscle, and visceral smooth muscle. The expression of the mammalian 5.3 kb SIP1 transcript in Drosophila zfh1 null mutant embryos completely restored normal heart development in the fly, demonstrating their functional equivalence in cardiogenic pathways. Our present data, together with the previously described heart defects associated with both SIP1 and Drosophila zfh1 mutations, solidify the conclusion that the zfh1 family members participate in an evolutionary conserved program of metazoan cardiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CNS:

central nervous system

δEF1:

delta EF1

SBD:

smad binding protein

SIP1 :

Smad-interacting protein 1

zfh1 :

zinc-finger homeodomain protein 1

References

  • Amiel J, Espinosa-Parrilla Y, Steffann J, Gosset P, Pelet A, Prieur M, Boute O, Choiset A, Lacombe D, Philip N, Le Merrer M, Tanaka H, Till M, Touraine R, Toutain A, Vekemans M, Munnich A, Lyonnet S (2001) Large-scale deletions and SMADIP1 truncating mutations in syndromic Hirschsprung disease with involvement of midline structures. Am J Hum Genet 69:1370–1377

    Article  PubMed  CAS  Google Scholar 

  • Bassez G, Camand OJ, Cacheux V, Kobetz A, Dastot-Le Moal F, Marchant D, Catala M, Abitbol M, Goossens M (2004) Pleiotropic and diverse expression of ZFHX1B gene transcripts during mouse and human development supports the various clinical manifestations of the “Mowat–Wilson” syndrome. Neurobiol Dis 15:240–250

    Article  PubMed  CAS  Google Scholar 

  • Black DL (2003) Mechanisms of alternative pre-messager RNA splicing. Ann Rev Biochem 72:291–336

    Article  PubMed  CAS  Google Scholar 

  • Bodmer R (1993) The gene tinman is required for specification of the heart and visceral muscles in Drosophila. Development 118:719–729

    PubMed  CAS  Google Scholar 

  • Bodmer R (1995) Heart development in Drosophila and its relationship to vertebrate systems. Trends Cardiovasc Med 5:21–28

    Article  CAS  Google Scholar 

  • Bodmer R, Venkatesh TV (1998) Heart development in Drosophila and vertebrates: conservation of molecular mechanisms. Dev Genet 22:181–186

    Article  PubMed  CAS  Google Scholar 

  • Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415

    PubMed  CAS  Google Scholar 

  • Broihier H, Moore L, Van Doren M, Newman S, Lehmann R (1998) zfh-1 is required for germ cell migration and gonadal mesoderm development in Drosophila. Development 125:655–666

    PubMed  CAS  Google Scholar 

  • Burns AJ, Le Douarin NM (2001) Enteric nervous system development: analysis of the selective developmental potentialities of vagal and sacral neural crest cells using quail-chick chimeras. Anat Rec 262:16–28

    Article  PubMed  CAS  Google Scholar 

  • Burns AJ, Champeval D, Le Douarin NM (2000) Sacral neural crest cells colonise aganglionic hindgut in vivo but fail to compensate for lack of enteric ganglia. Dev Biol 219:30–43

    Article  PubMed  CAS  Google Scholar 

  • Cacheux V, Dastot-Le Moal F, Kaariainen H, Bondurand N, Rintala R, Boissier B, Wilson M, Mowat D, Goossens M (2001) Loss-of-function mutations in SIP1 Smad interacting protein 1 result in a syndromic Hirschsprung disease. Hum Mol Genet 10:1503–1510

    Article  PubMed  CAS  Google Scholar 

  • Comijn J, Berx G, Vermassen P, Verschueren K, van Grunsven L, Bruyneel E, Mareel M, Huylebroeck D, van Roy F (2001) The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell 7:1267–1278

    Article  PubMed  CAS  Google Scholar 

  • Eldon ED, Pirrotta V (1991) Interactions of the Drosophila gap gene giant with maternal and zygotic pattern-forming genes. Development 111:367–378

    PubMed  CAS  Google Scholar 

  • Espinosa-Parrilla Y, Amiel J, Auge J, Encha-Razavi F, Munnich A, Lyonnet S, Vekemans M, Attie-Bitach T (2002) Expression of the SMADIP1 gene during early human development. Mech Dev 114:187–191

    Article  PubMed  CAS  Google Scholar 

  • Espinosa-Parrilla Y, Encha-Razavi F, Attie-Bitach T, Martinovic J, Morichon-Delvallez N, Munnich A, Vekemans M, Lyonnet S, Amiel J (2004) Molecular screening of the ZFHX1B gene in prenatally diagnosed isolated agenesis of the corpus callosum. Prenat Diagn 24:298–301

    Article  PubMed  CAS  Google Scholar 

  • Fishman MC, Olson EN (1997) Parsing the heart: genetic modules for organ assembly. Cell 91:153–156

    Article  PubMed  CAS  Google Scholar 

  • Francis-West P, Ladher R, Barlow A, Graveson A (1998) Signalling interactions during facial development. Mech Dev 75:3–28

    Article  PubMed  CAS  Google Scholar 

  • Frasch M, Hoey T, Rushlow C, Doyle H, Levine M (1987) Characterization and localization of the even-skipped protein of Drosophila. EMBO J 6:749–759

    PubMed  CAS  Google Scholar 

  • Fujioka M, Wessells RJ, Han Z, Liu J, Fitzgerald K, Yusibova GL, Zamora M, Ruiz-Lozano P, Bodmer R, Jaynes JB (2005) Embryonic even skipped-dependent muscle and heart cell fates are required for normal adult activity, heart function, and lifespan. Circ Res 97:1108–1114

    Article  PubMed  CAS  Google Scholar 

  • Funahashi J, Sekido R, Murai K, Kamachi Y, Kondoh H (1993) Delta-crystallin enhancer binding protein delta EF1 is a zinc finger-homeodomain protein implicated in postgastrulation embryogenesis. Development 119:433–446

    PubMed  CAS  Google Scholar 

  • Garavelli L, Donadio A, Zanacca C, Banchini G, Della Giustina E, Bertani G, Albertini G, Del Rossi C, Zweier C, Rauch A, Zollino M, Neri G (2003) Hirschsprung disease, mental retardation, characteristic facial features, and mutation in the gene ZFHX1B (SIP1): confirmation of the Mowat–Wilson syndrome. Am J Med Genet 116A:385–388

    Article  CAS  PubMed  Google Scholar 

  • Gershon MD (1998) V. Genes, lineages, and tissue interactions in the development of the enteric nervous system. Am J Physiol 275:G869–G873

    PubMed  CAS  Google Scholar 

  • Greig S, Akam M (1993) Homeotic genes autonomously specify one aspect of pattern in the Drosophila mesoderm. Nature 362:630–632

    Article  PubMed  CAS  Google Scholar 

  • Higashi Y, Moribe H, Takagi T, Sekido R, Kawakami K, Kikutani H, Kondoh H (1997) Impairment of T cell development in deltaEF1 mutant mice. J Exp Med 185:1467–1479

    Article  PubMed  CAS  Google Scholar 

  • Higashi YMM, Nelles L, Van de Putte T, Verschueren K, Miyoshi T, Yoshimoto A, Kondoh H, Huylebroeck D (2002) Generation of the floxed allele of the SIP1 (Smad-interacting protein 1) gene for Cre-mediated conditional knockout in the mouse. Genesis 32:82–84

    Article  PubMed  CAS  Google Scholar 

  • Kirby ML, Waldo KL (1995) Neural crest and cardiovascular patterning. Circ Res 77:211–215

    PubMed  CAS  Google Scholar 

  • Lai ZC, Fortini ME, Rubin GM (1991) The embryonic expression patterns of zfh-1 and zfh-2, two Drosophila genes encoding novel zinc-finger homeodomain proteins. Mech Dev 34:123–134

    Article  PubMed  CAS  Google Scholar 

  • Lai ZC, Rushton E, Bate M, Rubin GM (1993) Loss of function of the Drosophila zfh-1 gene results in abnormal development of mesodermally derived tissues. Proc Natl Acad Sci USA 90:4122–4126

    Article  PubMed  CAS  Google Scholar 

  • Lilly B, Zhao B, Ranganayakulu G, Paterson BM, Schulz RA, Olson EN (1995) Requirement of MADS domain transcription factor D-MEF2 for muscle formation in Drosophila. Science 267:688–693

    PubMed  CAS  Google Scholar 

  • Lockwood WK, Bodmer R (2002) The patterns of wingless, decapentaplegic, and tinman position the Drosophila heart. Mech Dev 114:13–26

    Article  PubMed  CAS  Google Scholar 

  • Lyons GE, Ontell M, Cox R, Sassoon D, Buckingham M (1990) The expression of myosin genes in developing skeletal muscle in the mouse embryo. J Cell Biol 111:1465–1476

    Article  PubMed  CAS  Google Scholar 

  • Miskolczi-McCallum CM, Scavetta RJ, Svendsen PC, Soanes KH, Brook WJ (2005) The Drosophila melanogaster T-box genes midline and H15 are conserved regulators of heart development. Dev Biol 278:459–472

    Article  PubMed  CAS  Google Scholar 

  • Mowat DR, Wilson MJ, Goossens M (2003) Mowat–Wilson syndrome. J Med Genet 40:305–310

    Article  PubMed  CAS  Google Scholar 

  • Olson EN, Schneider MD (2003) Sizing up the heart: development redux in disease. Genes Dev 17:1937–1956

    Article  PubMed  CAS  Google Scholar 

  • Patel NH (1994) Imaging neuronal subsets and other cell types in whole-mount Drosophila embryos and larvae using antibody probes. Methods Cell Biol 44:445–487

    Article  PubMed  CAS  Google Scholar 

  • Postigo AA, Dean DC (1997) ZEB, a vertebrate homolog of Drosophila Zfh-1, is a negative regulator of muscle differentiation. EMBO J 16:3935–3943

    Article  PubMed  CAS  Google Scholar 

  • Qian L, Liu J, Bodmer R (2005a) Neuromancer Tbx20-related genes (H15/midline) promote cell fate specification and morphogenesis of the Drosophila heart. Dev Biol 279:509–524

    Article  PubMed  CAS  Google Scholar 

  • Qian L, Liu J, Bodmer R (2005b) Slit and robo control cardiac cell polarity and morphogenesis. Curr Biol 15:2271–2278

    Article  PubMed  CAS  Google Scholar 

  • Reim I, Mohler JP, Frasch M (2005) Tbx20-related genes, mid and H15, are required for tinman expression, proper patterning, and normal differentiation of cardioblasts in Drosophila. Mech Dev 122:1056–1069

    Article  PubMed  CAS  Google Scholar 

  • Remacle JE, Kraft H, Lerchner W, Wuytens G, Collart C, Verschueren K, Smith JC, Huylebroeck D, Verschueren K, Remacle JE, Collart C, Kraft H, Baker BS, Tylzanowski P, Nelles L, Wuytens G, Su MT, Bodmer R, Smith JC, Huylebroeck D (1999) New mode of DNA binding of multi-zinc finger transcription factors: deltaEF1 family members bind with two hands to two target sites. EMBO J 18:5073–5084

    Article  PubMed  CAS  Google Scholar 

  • Robertson K, Mason I, Hall S (1997) Hirschsprung’s disease: genetic mutations in mice and men. Gut 41:436–441

    Article  PubMed  CAS  Google Scholar 

  • Sekido R, Murai K, Funahashi J, Kamachi Y, Fujisawa-Sehara A, Nabeshima Y, Kondoh H (1994) The delta-crystallin enhancer-binding protein delta EF1 is a repressor of E2-box-mediated gene activation. Mol Cell Biol 14:5692–5700

    PubMed  CAS  Google Scholar 

  • Shah NM, Groves AK, Anderson DJ (1996) Alternative neural crest cell fates are instructively promoted by TGFbeta superfamily members. Cell 85:331–343

    Article  PubMed  CAS  Google Scholar 

  • Stamm S, Zhu J, Nakai K, Stoilov P, Stoss O, Zhang MQ (2000) An alternative-exon database and its statistical analysis. DNA Cell Biol 19:739–756

    Article  PubMed  CAS  Google Scholar 

  • Stamm S, Ben-Ari S, Rafalska I, Tang Y, Zhang Z, Toiber D, Thanaraj TA, Soreq H (2005) Function of alternative splicing. Gene 344:1–20

    Article  PubMed  CAS  Google Scholar 

  • Stennard FA, Harvey RP (2005) T-box transcription factors and their roles in regulatory hierarchies in the developing heart. Development 132:4897–4910

    Article  PubMed  CAS  Google Scholar 

  • Su MT, Fujioka M, Goto T, Bodmer R (1999) The Drosophila homeobox genes zfh-1 and even-skipped are required for cardiac-specific differentiation of a numb-dependent lineage decision. Development 126:3241–3251

    PubMed  CAS  Google Scholar 

  • Swenson O (2002) Hirschsprung’s disease: a review. Pediatrics 109:914–918

    Article  PubMed  Google Scholar 

  • Sztriha L, Espinosa-Parrilla Y, Gururaj A, Amiel J, Lyonnet S, Gerami S, Johansen JG (2003a) Frameshift mutation of the zinc finger homeo box 1 B gene in syndromic corpus callosum agenesis (Mowat–Wilson syndrome). Neuropediatrics 34:322–325

    Article  PubMed  CAS  Google Scholar 

  • Sztriha LE-PY, Gururaj A, Amiel J, Lyonnet S, Gerami S, Johansen JG (2003b) Frameshift mutation of the zinc finger homeo box 1 B gene in syndromic corpus callosum agenesis (Mowat–Wilson syndrome). Neuropediatrics 34:322–325

    Article  PubMed  CAS  Google Scholar 

  • Takagi T, Moribe H, Kondoh H, Higashi Y (1998) DeltaEF1, a zinc finger and homeodomain transcription factor, is required for skeleton patterning in multiple lineages. Development 125:21–31

    PubMed  CAS  Google Scholar 

  • Van de Putte T, Maruhashi M, Francis A, Nelles L, Kondoh H, Huylebroeck D, Higashi Y (2003) Mice lacking ZFHX1B, the gene that codes for Smad-interacting protein-1, reveal a role for multiple neural crest cell defects in the etiology of Hirschsprung disease–mental retardation syndrome. Am J Hum Genet 72:465–470

    Article  PubMed  Google Scholar 

  • van Grunsven LA, Schellens A, Huylebroeck D, Verschueren K (2001) SIP1 (Smad interacting protein 1) and {delta}EF1 ({delta}-crystallin enhancer binding factor) are structurally similar transcriptional repressors: a current survey of their functions and mechanisms of action in transforming growth factor-{beta} signalling. J Bone Jt Surg Am 83:S40–S47

    Article  Google Scholar 

  • Verschueren K, Remacle JE, Collart C, Kraft H, Baker BS, Tylzanowski P, Nelles L, Wuytens G, Su MT, Bodmer R, Smith JC, Huylebroeck D (1999) SIP1, a novel zinc finger/homeodomain repressor, interacts with Smad proteins and binds to 5′-CACCT sequences in candidate target genes. J Biol Chem 274:20489–20498

    Article  PubMed  CAS  Google Scholar 

  • Wakamatsu N, Yamada Y, Yamada K, Ono T, Nomura N, Taniguchi H, Kitoh H, Mutoh N, Yamanaka T, Mushiake K, Kato K, Sonta S, Nagaya M (2001) Mutations in SIP1, encoding Smad interacting protein-1, cause a form of Hirschsprung disease. Nat Genet 27:369–370

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson TM (1998) In situ hybridization: a practical approach. Oxford, Oxford University Press

    Google Scholar 

  • Wilson M, Mowat D, Dastot-Le Moal F, Cacheux V, Kaariainen H, Cass D, Donnai D, Clayton-Smith J, Townshend S, Curry C, Gattas M, Braddock S, Kerr B, Aftimos S, Zehnwirth H, Barrey C, Goossens M (2003) Further delineation of the phenotype associated with heterozygous mutations in ZFHX1B. Am J Med Genet 119A:257–265

    Article  PubMed  Google Scholar 

  • Xu Q, Modrek B, Lee C (2002) Genome-wide detection of tissue-specific alternative splicing in the human transcriptome. Nucleic Acids Res 30:3754–3766

    Article  PubMed  CAS  Google Scholar 

  • Yamada K, Yamada Y, Nomura N, Miura K, Wakako R, Hayakawa C, Matsumoto A, Kumagai T, Yoshimura I, Miyazaki S, Kato K, Sonta S, Ono H, Yamanaka T, Nagaya M, Wakamatsu N (2001) Nonsense and frameshift mutations in ZFHX1B, encoding Smad-interacting protein 1, cause a complex developmental disorder with a great variety of clinical features. Am J Hum Genet 69:1178–1185

    Article  PubMed  CAS  Google Scholar 

  • Yarnitzky T, Volk T (1995) Laminin is required for heart, somatic muscles, and gut development in the Drosophila embryo. Dev Biol 169:609–618

    Article  PubMed  CAS  Google Scholar 

  • Zweier C, Albrecht B, Mitulla B, Behrens R, Beese M, Gillessen-Kaesbach G, Rott HD, Rauch A (2002) “Mowat–Wilson” syndrome with and without Hirschsprung disease is a distinct, recognizable multiple congenital anomalies–mental retardation syndrome caused by mutations in the zinc finger homeo box 1B gene. Am J Med Genet 108:177–181

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Zhi-Chen Lai, Manfred Frasch, Bruce Paterson, Talila Volk, and Michel Sémériva, Bloomington stock center, and Developmental Studies for Hybridoma Bank for providing fly stocks and valuable antibodies for this study. MKL was funded by a scientist development grant from the American Heart Association. This work was funded by grants from the National Institute of Health (NHLBI) to RB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Bodmer.

Additional information

Communicated by P. Simpson

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, M., Su, M., Lyons, G.E. et al. Functional conservation of zinc-finger homeodomain gene zfh1/SIP1 in Drosophila heart development. Dev Genes Evol 216, 683–693 (2006). https://doi.org/10.1007/s00427-006-0096-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-006-0096-1

Keywords

Navigation