Skip to main content
Log in

Hox gene expression in larval development of the polychaetes Nereis virens and Platynereis dumerilii (Annelida, Lophotrochozoa)

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

The bilaterian animals are divided into three great branches: the Deuterostomia, Ecdysozoa, and Lophotrochozoa. The evolution of developmental mechanisms is less studied in the Lophotrochozoa than in the other two clades. We have studied the expression of Hox genes during larval development of two lophotrochozoans, the polychaete annelids Nereis virens and Platynereis dumerilii. As reported previously, the Hox cluster of N. virens consists of at least 11 genes (de Rosa R, Grenier JK, Andreeva T, Cook CE, Adoutte A, Akam M, Carroll SB, Balavoine G, Nature, 399:772–776, 1999; Andreeva TF, Cook C, Korchagina NM, Akam M, Dondua AK, Ontogenez 32:225–233, 2001); we have also cloned nine Hox genes of P. dumerilii. Hox genes are mainly expressed in the descendants of the 2d blastomere, which form the integument of segments, ventral neural ganglia, pre-pygidial growth zone, and the pygidial lobe. Patterns of expression are similar for orthologous genes of both nereids. In Nereis, Hox2, and Hox3 are activated before the blastopore closure, while Hox1 and Hox4 are activated just after this. Hox5 and Post2 are first active during the metatrochophore stage, and Hox7, Lox4, and Lox2 at the late nectochaete stage only. During larval stages, Hox genes are expressed in staggered domains in the developing segments and pygidial lobe. The pattern of expression of Hox cluster genes suggests their involvement in the vectorial regionalization of the larval body along the antero-posterior axis. Hox gene expression in nereids conforms to the canonical patterns postulated for the two other evolutionary branches of the Bilateria, the Ecdysozoa and the Deuterostomia, thus supporting the evolutionary conservatism of the function of Hox genes in development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ackermann C, Dorresteijn A, Fischer A (2005) Clonal domains in postlarval Platynereis dumerilii (Annelida: Polychaeta). J Morphol 266:258–280

    Article  PubMed  Google Scholar 

  • Akam M (1995) Hox genes and the evolution of diverse body plans. Philos Trans R Soc Lond B Biol Sci 349:313–319

    Article  PubMed  CAS  Google Scholar 

  • Akam M (1998) Hox genes, homeosis and the evolution of segment identity: no need for hopeless monsters. Int J Dev Biol 42:445–451

    PubMed  CAS  Google Scholar 

  • Aguinaldo AM, Turbeville JM, Linford LS, Rivera MC, Garey JR, Raff RA, Lake JA (1997) Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 387:489–493

    Article  PubMed  CAS  Google Scholar 

  • Anderson DT (1973) Embryology and phylogeny in annelids and arthropods. Oxford, Pergamon

    Google Scholar 

  • Andreeva TF, Cook C, Korchagina NM, Akam M, Dondua AK (2001) Cloning and analysis of structural organization of Hox genes in the polychaete Nereis virens. Ontogenez 32:225–233

    PubMed  CAS  Google Scholar 

  • Arendt D (2003) Spiralians in the limelight. Genome Biol 5:303

    Article  PubMed  Google Scholar 

  • Arendt D, Tessmar-Raible K, Snyman H, Dorresteijn AW, Wittbrodt J (2004) Ciliary photoreceptors with a vertebrate-type opsin in an invertebrate brain. Science 306:869–871

    Article  PubMed  CAS  Google Scholar 

  • Bleidorn C, Vogt L, Bartolomaeus T (2003) New insight into polychaete phylogeny (Annelida) inferred from 18S rDNA sequences. Mol Phyl Evol 29:279–288

    Article  CAS  Google Scholar 

  • Brusca RC, Brusca GJ (2002) Invertebrates. Sinauer, Massachusetts

    Google Scholar 

  • Callaerts P, Lee PN, Hartmann B, Farfan C, Choy DW, Ikeo K, Fischbach KF, Gehring WJ, de Couet HG (2002) Hox genes in the sepiolid squid Euprymna scolopes: implications for the evolution of complex body plans. Proc Natl Acad Sci USA 99:2088–2093

    Article  PubMed  CAS  Google Scholar 

  • Carroll SB, Grenier JK, Weatherbee SD (2001) From DNA to Diversity: Molecular genetics and the evolution of animal design. Blackwell Science, Malden MA

    Google Scholar 

  • Cho SJ, Cho PY, Lee MS, Hur, SY, Lee JA, Kim SK, Koh KS, Na YE, Choo JK, Kim CB, Park SC (2003) Hox genes from the earthworm Perionyx excavatus. Dev Genes Evol 213:207–210

    PubMed  CAS  Google Scholar 

  • Davidson EH (2001) Genomic regulatory systems: development and evolution. Academic, San Diego

    Google Scholar 

  • Davidson EH, Peterson KJ, Cameron RA (1995) Origin of bilaterian body plans: evolution of developmental regulatory mechanisms. Science 24:1319–1325

    Article  Google Scholar 

  • de Rosa R, Grenier JK, Andreeva T, Cook CE, Adoutte A, Akam M, Carroll SB, Balavoine G (1999) Hox genes in brachiopods and priapulids and protostome evolution. Nature 399:772–776

    Article  PubMed  CAS  Google Scholar 

  • Dondua AK (1975) Effect of actinomycin D and sibiromycin on the embryonic and larval development of Nereis virens. Ontogenez 6:475–484

    PubMed  CAS  Google Scholar 

  • Erwin DH, Davidson EH (2002) The last common bilaterian ancestor. Development 129:3021–3032

    PubMed  CAS  Google Scholar 

  • Ferrier DEK, Minguillon C (2003) Evolution of the Hox/ParaHox gene clusters. Int J Dev Biol 47:605–611

    PubMed  CAS  Google Scholar 

  • Fischer A, Dorresteijn A (2004) The polychaete Platynereis dumerilii (Annelida): a laboratory animal with spiralian cleavage, lifelong segment proliferation and a mixed benthic/pelagic life cycle. Bioessays 26:314–325

    Article  PubMed  Google Scholar 

  • Hall KA, Hutchings PA, Colgan DJ (2004) Further phylogenetic studies of the Polychaeta using 18S rDNA sequence data. J Mar Biol Assoc UK 84:949–960

    Article  CAS  Google Scholar 

  • Hauenschild C, Fischer A (1969) Platynereis dumerilii. Grosses Zoologisches Praktikum, Heft 10b. Gustav Fischer Verlag, Stuttgart

    Google Scholar 

  • Hinman VF, O’Brien EK, Richards GS, Degnan BM (2003) Expression of anterior Hox genes during larval development of the gastropod Haliotis asinina. Evol Dev 5:508–521

    Article  PubMed  CAS  Google Scholar 

  • Irvine SQ, Martindale MQ (2000) Expression patterns of anterior Hox genes in the polychaete Chaetopterus: correlation with morphological boundaries. Dev Biol 217:333–351

    Article  PubMed  CAS  Google Scholar 

  • Irvine SQ, Martindale MQ (2001) Comparative analysis of Hox gene expression in the polychaete Chaetopteus: implications for the evolution of body plan regionalization. Am Zool 41:640–651

    Article  CAS  Google Scholar 

  • Irvine SQ, Chaga O, Martindale MQ (1999) Larval ontogenetic stages of Chaetopterus: developmental heterochrony in the evolution of chaetopterid polychaetes. Biol Bull 197:319–331

    Article  PubMed  CAS  Google Scholar 

  • Iwanoff PP (1928) Die Entwicklung der Larvalsegmente bei den Anneliden. Z Morphol Okol Tiere 10:62–161

    Article  Google Scholar 

  • Kmita-Cunisse M, Loosli F, Bierne J, Gehring WJ (1998) Homeobox genes in the ribbonworm Lineus sanguineus: evolutionary implications. Proc Natl Acad Sci USA 95:3030–3035

    Article  PubMed  CAS  Google Scholar 

  • Kourakis MJ, Master VA, Lokhorst DK, Nardelli-Haefliger D, Wedeen CJ, Martindale MQ, Shankland M (1997) Conserved anterior boundaries of Hox gene expression in the central nervous system of the leech Helobdella. Dev Biol 190:284–300

    Article  PubMed  CAS  Google Scholar 

  • Kulakova MA, Kostyuchenko RP, Andreeva TF, Dondua AK (2002) The Abdominal-B-like gene expression during larval development of Nereis virens (Polychaeta). Mech Dev 115:177–179

    Article  PubMed  CAS  Google Scholar 

  • Lee PN, Callaerts P, de Couet HG, Martindale MQ (2003) Cephalopod Hox genes and the origin of morphological novelties. Nature 424:1061–1065

    Article  PubMed  CAS  Google Scholar 

  • Nardelli-Haefliger D, Shankland M (1992) Lox2, a putative leech segment identity gene, is expressed in the same segmental domain in different stem cell lineages. Development 116:697–710

    PubMed  CAS  Google Scholar 

  • Nardelli-Haefliger D, Bruce AE, Shankland M (1994) An axial domain of HOM/Hox gene expression is formed by morphogenetic alignment of independently specified cell lineages in the leech Helobdella. Development 120:1839–1849

    PubMed  CAS  Google Scholar 

  • Nielsen C (2004) Trochophore larvae: cell-lineages, ciliary bands and body regions. 1. Annelida and mollusca. J Exp Zool (Mol Dev Evol) 302:35–68

    Google Scholar 

  • Nogi T, Watanabe K (2001) Position-specific and non-colinear expression of the planarian posterior (Abdominal-B-like) gene. Dev Growth Differ 43:177–184

    Article  PubMed  CAS  Google Scholar 

  • Peterson KJ, Davidson EH (2000) Regulatory evolution and the origin of the bilaterians. Proc Natl Acad Sci USA 97:4430–4433

    Article  PubMed  CAS  Google Scholar 

  • Peterson KJ, Cameron RA, Davidson EH (2000a) Bilaterian origins: significance of new experimental observations. Dev Biol 219:1–17

    Article  PubMed  CAS  Google Scholar 

  • Peterson KJ, Irvine SQ, Cameron RA, Davidson EH (2000b) Quantitative assessment of Hox complex expression in the indirect development of the polychaete annelid Chaetopterus sp. Proc Natl Acad Sci USA 97:4487–4492

    Article  PubMed  CAS  Google Scholar 

  • Philippe H, Lartillot N, Brinkmann H (2005) Multigene analyses of bilaterian animals corroborate the monophyly of Ecdysozoa, Lophotrochozoa, and Protostomia. Mol Biol Evol 22:1246–1253

    Article  PubMed  CAS  Google Scholar 

  • Raible F, Tessmar-Raible K, Osoegawa K, Wincker P, Jubin C, Balavoine G, Ferrier D, Benes V, de Jong P, Weissenbach J, Bork P, Arendt D (2005) Vertebrate-type intron-rich genes in the marine annelid Platynereis dumerilii. Science 310:1325–1326

    Article  PubMed  CAS  Google Scholar 

  • Seo HC, Edvardsen RB, Maelandi AD, Bjordal M, Jensen MF, Hansen A, Flaat M, Weissenbach J, Lehrach H, Wincker P, Reinhardt R, Chourrout D (2004) Hox cluster disintegration with persistent anteroposterior order of expression in Oikopleura dioica. Nature 431:67–71

    Article  PubMed  CAS  Google Scholar 

  • Seaver EC, Kanashige LM (2006) Expression of “segmentation” genes during larval and juvenile development in the polychaetes Capitella sp. and H. elegans. Dev Biol 289:179–194

    Article  PubMed  CAS  Google Scholar 

  • Seaver EC, Thamm K, Hill SD (2005) Growth patterns during segmentation in the two polychaete annelids, Capitella sp. I and Hydroides elegans: comparisons at distinct life history stages. Evol Dev 7:312–326

    Article  PubMed  Google Scholar 

  • Shankland M, Seaver EC (2000) Evolution of the bilaterian body plan: what have we learned from annelid? Proc Natl Acad Sci USA 97:4434–4437

    Article  PubMed  CAS  Google Scholar 

  • Slack JMW, Holland PWH, Graham CF (1993) The zootype and the phylotypic stage. Nature 361:490–492

    Article  PubMed  CAS  Google Scholar 

  • Telford MJ (2000) Turning Hox “signatures” into synapomorphies. Evol Dev 2:360–364

    Article  PubMed  CAS  Google Scholar 

  • Tessmar-Raible K, Arendt D (2003) Emerging systems: between vertebrates and arthropods, the Lophotrochozoa. Curr Opin Genet Dev 13:331–340

    Article  PubMed  CAS  Google Scholar 

  • Ushakov PV (1972) Polychaete worms. 1. Fauna of SSSR. Nauka, Leningrad

    Google Scholar 

  • Wilson EB (1892) The cell lineage of Nereis. J Morph 6:361–480

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Mrs. Zh. E. Fedorova for assistance in establishing nereid cultures and the group, “Chromas,” in the Biological Institute of Saint-Petersburg University for allowing the use of the core facility equipment. We also thank Dr. T. Bosch and Dr. E. Davidson for the careful reading of the manuscript and for the useful remarks. Thanks are due to A. Nesterenko for the help with the paper preparation. This work was supported by the Russian Foundation for Basic Research Grant no. 06-04-49654-a and by the Biotechnology and Biological Sciences Research Council of the UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana Andreeva.

Additional information

Communicated by D. A. Weisblat

Milana Kulakova, Nadezhda Bakalenko and Elena Novikova contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulakova, M., Bakalenko, N., Novikova, E. et al. Hox gene expression in larval development of the polychaetes Nereis virens and Platynereis dumerilii (Annelida, Lophotrochozoa). Dev Genes Evol 217, 39–54 (2007). https://doi.org/10.1007/s00427-006-0119-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-006-0119-y

Keywords

Navigation