Skip to main content

Advertisement

Log in

The SCPP gene repertoire in bony vertebrates and graded differences in mineralized tissues

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

The vertebrate tooth is covered with enamel in most sarcopterygians or enameloid in chondrichthyans and actinopterygians. The evolutionary relationship among these two tissues, the hardest tissue in the body, and other mineralized tissues has long been controversial. We have recently reported that specific combinations of secretory calcium-binding phosphoprotein (SCPP) genes are involved in the mineralization of bone, dentin, enameloid, and enamel. Thus, the early repertoire of SCPP genes would elucidate the evolutionary relationship across these tissues. However, the diversity of SCPP genes in teleosts and tetrapods and the roles of these genes in distinct tissues have remained unclear, mainly because many SCPP genes are lineage-specific. In this study, I show that the repertoire of SCPP genes in the zebrafish, frog, and humans includes many lineage-specific genes and some widely conserved genes that originated in stem osteichthyans or earlier. Expression analysis demonstrates that some frog and zebrafish SCPP genes are used primarily in bone, but also in dentin, while the reverse is true of other genes, similar to some mammalian SCPP genes. Dentin and enameloid initially use shared genes in the matrix, but enameloid is subsequently hypermineralized. Notably, enameloid and enamel use an orthologous SCPP gene in the hypermineralization process. Thus, the hypermineralization machinery ancestral to both enameloid and enamel arose before the actinopterygian–sarcopterygian divergence. However, enamel employs specialized SCPPs as structuring proteins, not used in enameloid, reflecting the divergence of enamel from enameloid. These results show graded differences in mineralized dental tissues and reinforce the hypothesis that bone–dentin–enameloid–enamel constitutes an evolutionary continuum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Al Kawas S, Warshawsky H (2008) Ultrastructure and composition of basement membrane separating mature ameloblasts from enamel. Arch Oral Biol 53:310–317

    Article  PubMed  CAS  Google Scholar 

  • Bartlett JD, Ganss B, Goldberg M, Moradian-Oldak J, Paine ML, Snead ML, Wen X, White SN, Zhou YL (2006) Protein–protein interactions of the developing enamel matrix. Curr Top Dev Biol 74:57–115

    Article  PubMed  CAS  Google Scholar 

  • Bobe J, Goetz FW (2001) A novel osteopontin-like protein is expressed in the trout ovary during ovulation. FEBS Lett 489:119–124

    Article  PubMed  CAS  Google Scholar 

  • Butler WT, Brunn JC, Qin C (2003) Dentin extracellular matrix (ECM) proteins: comparison to bone ECM and contribution to dynamics of dentinogenesis. Connect Tissue Res 44(Suppl 1):171–178

    Article  PubMed  CAS  Google Scholar 

  • Currey JD (2002) Bones: structure and mechanics. Princeton University Press, Princeton

    Google Scholar 

  • Donoghue PC, Sansom IJ, Downs JP (2006) Early evolution of vertebrate skeletal tissues and cellular interactions, and the canalization of skeletal development. J Exp Zoolog B Mol Dev Evol 306B:278–294

    Article  CAS  Google Scholar 

  • Fincham AG, Moradian-Oldak J, Simmer JP (1999) The structural biology of the developing dental enamel matrix. J Struct Biol 126:270–299

    Article  PubMed  CAS  Google Scholar 

  • Fujisawa R, Butler WT, Brunn JC, Zhou HY, Kuboki Y (1993) Differences in composition of cell-attachment sialoproteins between dentin and bone. J Dent Res 72:1222–1226

    PubMed  CAS  Google Scholar 

  • Hall BK (2005) Bones and cartilage: developmental and evolutionary skeletal biology. Elsevier, San Diego

    Google Scholar 

  • Huysseune A, Van der heyden C, Sire JY (1998) Early development of the zebrafish (Danio rerio) pharyngeal dentition (Teleostei, Cyprinidae). Anat Embryol (Berl) 198:289–305

    Article  CAS  Google Scholar 

  • Iwasaki K, Bajenova E, Somogyi-Ganss E, Miller M, Nguyen V, Nourkeyhani H, Gao Y, Wendel M, Ganss B (2005) Amelotin—a novel secreted, ameloblast-specific protein. J Dent Res 84:1127–1132

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki K, Weiss KM (2003) Mineralized tissue and vertebrate evolution: the secretory calcium-binding phosphoprotein gene cluster. Proc Natl Acad Sci U S A 100:4060–4065

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki K, Weiss KM (2006) Evolutionary genetics of vertebrate tissue mineralization: the origin and evolution of the secretory calcium-binding phosphoprotein family. J Exp Zoolog B Mol Dev Evol 306B:295–316

    Article  CAS  Google Scholar 

  • Kawasaki K, Weiss KM (2007) Genetic basis for the evolution of vertebrate mineralized tissue. In: Bäuerlein E (ed) Handbook of biomineralization. Wiley-VCH, Weinheim, pp 331–347

    Google Scholar 

  • Kawasaki K, Weiss KM (2008) SCPP gene evolution and the dental mineralization continuum. J Dent Res 87:520–531

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki K, Shimoda S, Fukae M (1987) Histological and biochemical observations of developing enameloid of the sea bream. Adv Dent Res 1:191–195

    PubMed  CAS  Google Scholar 

  • Kawasaki K, Suzuki T, Weiss KM (2004) Genetic basis for the evolution of vertebrate mineralized tissue. Proc Natl Acad Sci U S A 101:11356–11361

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki K, Suzuki T, Weiss KM (2005) Phenogenetic drift in evolution: the changing genetic basis of vertebrate teeth. Proc Natl Acad Sci U S A 102:18063–18068

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki K, Buchanan AV, Weiss KM (2007) Gene duplication and the evolution of vertebrate skeletal mineralization. Cells Tissues Organs 186:7–24

    Article  PubMed  Google Scholar 

  • Laue K, Jänicke M, Plaster N, Sonntag C, Hammerschmidt M (2008) Restriction of retinoic acid activity by Cyp26b1 is required for proper timing and patterning of osteogenesis during zebrafish development. Development 135:3775–3787

    Article  PubMed  CAS  Google Scholar 

  • Linde A, Goldberg M (1993) Dentinogenesis. Crit Rev Oral Biol Med 4:679–728

    PubMed  CAS  Google Scholar 

  • Little EM, Holt C (2004) An equilibrium thermodynamic model of the sequestration of calcium phosphate by casein phosphopeptides. Eur Biophys J 33:435–447

    Article  PubMed  CAS  Google Scholar 

  • Loh YH, Brenner S, Venkatesh B (2008) Investigation of loss and gain of introns in the compact genomes sof pufferfishes (fugu and tetraodon). Mol Biol Evol 25:526–535

    Article  PubMed  CAS  Google Scholar 

  • Meinke DK (1982) A histological and histochemical study of developing teeth in Polypterus (Pisces, Actinopterygii). Arch Oral Biol 27:197–206

    Article  PubMed  CAS  Google Scholar 

  • Meinke DK, Thomson KS (1983) The distribution and significance of enamel and enameloid in the dermal skeleton of osteolepiform. Paleobiology 9:138–149

    Google Scholar 

  • Moffatt P, Smith CE, Sooknanan R, St-Arnaud R, Nanci A (2006a) Identification of secreted and membrane proteins in the rat incisor enamel organ using a signal-trap screening approach. Eur J Oral Sci 114(Suppl 1):139–146

    Article  PubMed  CAS  Google Scholar 

  • Moffatt P, Smith CE, St-Arnaud R, Simmons D, Wright JT, Nanci A (2006b) Cloning of rat amelotin and localization of the protein to the basal lamina of maturation stage ameloblasts and junctional epithelium. Biochem J 399:37–46

    Article  PubMed  CAS  Google Scholar 

  • Moffatt P, Smith CE, St-Arnaud R, Nanci A (2008) Characterization of Apin, a secreted protein highly expressed in tooth-associated epithelia. J Cell Biochem 103:941–956

    Article  PubMed  CAS  Google Scholar 

  • Nanci A, Zalzal S, Kogaya Y (1993) Cytochemical characterization of basement membranes in the enamel organ of the rat incisor. Histochemistry 99:321–331

    Article  PubMed  CAS  Google Scholar 

  • Nanci A (2003) Ten Cate’s oral histology, 6th edn. Mosby, St. Louis

    Google Scholar 

  • Ng P, Wei CL, Sung WK, Chiu KP, Lipovich L, Ang CC, Gupta S, Shahab A, Ridwan A, Wong CH, Liu ET, Ruan Y (2005) Gene identification signature (GIS) analysis for transcriptome characterization and genome annotation. Nat Methods 2:105–111

    Article  PubMed  CAS  Google Scholar 

  • Nieuwkoop PD, Faber J (1967) Normal table of Xenopus laevis (Daudin), 2nd edn. North-Holland, Amsterdam

    Google Scholar 

  • Paine ML, Snead ML (2005) Tooth developmental biology: disruptions to enamel–matrix assembly and its impact on biomineralization. Orthod Craniofac Res 8:239–251

    Article  PubMed  CAS  Google Scholar 

  • Park JC, Park JT, Son HH, Kim HJ, Jeong MJ, Lee CS, Dey R, Cho MI (2007) The amyloid protein APin is highly expressed during enamel mineralization and maturation in rat incisors. Eur J Oral Sci 115:153–160

    Article  PubMed  CAS  Google Scholar 

  • Poole DFG (1967) Phylogeny of tooth tissues: Enameloid and enamel in recent vertebrates with a note in the history of cementum. In: Miles AEW (ed) Structural and chemical organization of teeth. Academic, New York, pp 111–149

    Google Scholar 

  • Poole DFG (1971) An introduction to the phylogeny of calcified tissues. In: Dahlberg AA (ed) Dental morphology and evolution. University of Chicago Press, Chicago, pp 65–79

    Google Scholar 

  • Qin C, Brunn JC, Jones J, George A, Ramachandran A, Gorski JP, Butler WT (2001) A comparative study of sialic acid-rich proteins in rat bone and dentin. Eur J Oral Sci 109:133–141

    Article  PubMed  CAS  Google Scholar 

  • Qin C, Brunn JC, Cadena E, Ridall A, Tsujigiwa H, Nagatsuka H, Nagai N, Butler WT (2002) The expression of dentin sialophosphoprotein gene in bone. J Dent Res 81:392–394

    Article  PubMed  CAS  Google Scholar 

  • Qin C, Baba O, Butler WT (2004) Post-translational modifications of sibling proteins and their roles in osteogenesis and dentinogenesis. Crit Rev Oral Biol Med 15:126–136

    Article  PubMed  CAS  Google Scholar 

  • Qin C, D’Souza R, Feng JQ (2007) Dentin matrix protein 1 (DMP1): new and important roles for biomineralization and phosphate homeostasis. J Dent Res 86:1134–1141

    Article  PubMed  CAS  Google Scholar 

  • Rijnkels M, Elnitski L, Miller W, Rosen JM (2003) Multispecies comparative analysis of a mammalian-specific genomic domain encoding secretory proteins. Genomics 82:417–432

    Article  PubMed  CAS  Google Scholar 

  • Sasagawa I (1997) Fine structure of the cap enameloid and of the dental epithelial cells during enameloid mineralisation and early maturation stages in the tilapia, a teleost. J Anat 190(Pt 4):589–600

    Article  PubMed  Google Scholar 

  • Sasagawa I, Ishiyama M (1988) The structure and development of the collar enameloid in two teleost fishes, Halichoeres poecilopterus and Pagrus major. Anat Embryol (Berl) 178:499–511

    Article  CAS  Google Scholar 

  • Shellis RP, Miles AEW (1974) Autoradiographic study of the formation of enameloid and dentine matrices in teleost fishes using tritiated amino acids. Proc R Soc Lond B 185:51–72

    Article  Google Scholar 

  • Shintani S, Kobata M, Toyosawa S, Ooshima T (2003) Identification and characterization of ameloblastin gene in an amphibian, Xenopus laevis. Gene 318:125–136

    Article  PubMed  CAS  Google Scholar 

  • Simmer JP, Fincham AG (1995) Molecular mechanisms of dental enamel formation. Crit Rev Oral Biol Med 6:84–108

    Article  PubMed  CAS  Google Scholar 

  • Simmer JP, Hu JC (2002) Expression, structure, and function of enamel proteinases. Connect Tissue Res 43:441–449

    Article  PubMed  CAS  Google Scholar 

  • Smith CE (1998) Cellular and chemical events during enamel maturation. Crit Rev Oral Biol Med 9:128–161

    Article  PubMed  CAS  Google Scholar 

  • Smith MM (1992) Microstructure and evolution of enamel amongst osteichthyan and early tetrapods. In: Smith P, Tchernov E (eds) Structure, function and evolution of teeth. Freund, Tel Aviv, pp 73–101

    Google Scholar 

  • Smith MM (1995) Heterochrony in the evolution of enamel in vertebrates. In: McNamara KJ (ed) Evolutionary change and heterochrony. Wiley, Chichester, pp 125–150

    Google Scholar 

  • Smyth E, Clegg RA, Holt C (2004) A biological perspective on the structure and function of caseins and casein micelles. Int J Dairy Technol 57:121–126

    Article  CAS  Google Scholar 

  • Sodek J, Ganss B, McKee MD (2000) Osteopontin. Crit Rev Oral Biol Med 11:279–303

    Article  PubMed  CAS  Google Scholar 

  • Solomon A, Murphy CL, Weaver K, Weiss DT, Hrncic R, Eulitz M, Donnell RL, Sletten K, Westermark G, Westermark P (2003) Calcifying epithelial odontogenic (Pindborg) tumor-associated amyloid consists of a novel human protein. J Lab Clin Med 142:348–355

    Article  PubMed  CAS  Google Scholar 

  • Stock DW (2007) Zebrafish dentition in comparative context. J Exp Zoolog B Mol Dev Evol 308:523–549

    Article  PubMed  Google Scholar 

  • Takano Y (1979) Cytochemical studies of ameloblasts and the surface layer of enamel of the rat incisor at the maturation stage. Arch Histol Jpn 42:11–32

    PubMed  CAS  Google Scholar 

  • Toyosawa S, O’hUigin C, Figueroa F, Tichy H, Klein J (1998) Identification and characterization of amelogenin genes in monotremes, reptiles, and amphibians. Proc Natl Acad Sci U S A 95:13056–13061

    Article  PubMed  CAS  Google Scholar 

  • Toyosawa S, Shintani S, Fujiwara T, Ooshima T, Sato A, Ijuhin N, Komori T (2001) Dentin matrix protein 1 is predominantly expressed in chicken and rat osteocytes but not in osteoblasts. J Bone Miner Res 16:2017–2026

    Article  PubMed  CAS  Google Scholar 

  • Van der heyden C, Huysseune A (2000) Dynamics of tooth formation and replacement in the zebrafish (Danio rerio) (Teleostei, Cyprinidae). Dev Dyn 219:486–496

    Article  PubMed  Google Scholar 

  • Van der heyden C, Huysseune A, Sire JY (2000) Development and fine structure of pharyngeal replacement teeth in juvenile zebrafish (Danio rerio) (Teleostei, Cyprinidae). Cell Tissue Res 302:205–219

    Article  Google Scholar 

Download references

Acknowledgments

I thank Prof. Keith C. Cheng and Ms. Peggy Hubley at Penn State University for providing me with zebrafish, Prof. Martin Flajnik and Dr. Yuko Ohta at the University of Maryland for the frog, and Dr. Chia-Lin Wei and Mr. Yow Jit Sin at the Genome Institute of Singapore for zebrafish clones. I am grateful to Prof. Kenneth M. Weiss and Dr. Anne V. Buchanan at Penn State University and Dr. Samuel Sholtis at Yale University for critical discussion and generous comments. This work was made possible by the financial support from awards SBR9804907 and BCS0343442 from the US National Science Foundation, and by research funds from Penn State University to Prof. Kenneth M. Weiss; and by NIH grant 5R24RR017441, and research grants from the Jake Gittlen Cancer Research Foundation and the Pennsylvania Tobacco Funds to Prof. Keith C. Cheng.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiko Kawasaki.

Additional information

Communicated by M. Hammerschmidt

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 31.5 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawasaki, K. The SCPP gene repertoire in bony vertebrates and graded differences in mineralized tissues. Dev Genes Evol 219, 147–157 (2009). https://doi.org/10.1007/s00427-009-0276-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-009-0276-x

Keywords

Navigation