Skip to main content

Advertisement

Log in

Gross genomic alterations differ between serous borderline tumors and serous adenocarcinomas—an image cytometric DNA ploidy analysis of 307 cases with histogenetic implications

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Our objective was to study the gross genomic alterations in serous borderline tumors and serous adenocarcinomas of the ovary. A retrospective analysis of 245 serous borderline tumors and 62 serous adenocarcinomas from 249 patients was performed using high-resolution image cytometric DNA ploidy analysis. DNA ploidy status, S-phase fraction, and DNA index were evaluated. The majority of serous borderline tumors were diploid (225/245 cases, 92%). The remaining 8% showed an aneuploid peak predominantly with DNA index of less than 1.4. Grades 2 and 3 serous adenocarcinomas were more often (80%) nondiploid, mostly with DNA index exceeding 1.4. Grade 1 serous adenocarcinomas were an intermediate group, more similar to serous borderline tumors. The S-phase fraction increased from serous borderline tumors (mean = 0.6%) through grade 1 serous adenocarcinomas (mean = 2.8%), being highest in grades 2 and 3 adenocarcinomas (mean = 6.8%). Our findings support the hypothesis that serous borderline tumors and grades 2 and 3 serous adenocarcinomas are genomically different lesions, with grade 1 serous adenocarcinomas being an intermediate group more close to borderline tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lee KR, Tavassoli FA, Prat J et al (2003) Tumors of the ovary and peritoneum. In: Tavassoli FA, Devilee P (eds) World Health Organization classification of tumours: pathology and genetics. Tumours of the breast and female genital organs. IARC, Lyon, pp 117–124

    Google Scholar 

  2. Trimble CL, Kosary C, Trimble EL (2002) Long-term survival and patterns of care in women with ovarian tumors of low malignant potential. Gynecol Oncol 86:34–37

    Article  PubMed  Google Scholar 

  3. Heintz AP, Odicino F, Maisonneuve P et al (2003) Carcinoma of the ovary. Int J Gynaecol Obstet 83(Suppl 1):135–166

    Article  PubMed  Google Scholar 

  4. Aletti GD, Gallenberg MM, Cliby WA et al (2007) Current management strategies for ovarian cancer. Mayo Clin Proc 82:751–770

    Article  PubMed  Google Scholar 

  5. Kurman RJ, Shih IeM (2008) Pathogenesis of ovarian cancer: lessons from morphology and molecular biology and their clinical implications. Int J Gynecol Pathol 27:151–160

    PubMed  Google Scholar 

  6. Hauptmann S, Denkert C, Koch I et al (2002) Genetic alterations in epithelial ovarian tumors analyzed by comparative genomic hybridization. Hum Pathol 33:632–641

    Article  PubMed  CAS  Google Scholar 

  7. Meinhold-Heerlein I, Bauerschlag D, Hilpert F et al (2005) Molecular and prognostic distinction between serous ovarian carcinomas of varying grade and malignant potential. Oncogene 24:1053–1065

    Article  PubMed  CAS  Google Scholar 

  8. Tibiletti MG, Bernasconi B, Taborelli M et al (2003) Genetic and cytogenetic observations among different types of ovarian tumors are compatible with a progression model underlying ovarian tumorigenesis. Cancer Genet Cytogenet 146:145–153

    Article  PubMed  CAS  Google Scholar 

  9. Kristensen GB, Kildal W, Abeler VM et al (2003) Large-scale genomic instability predicts long-term outcome for women with invasive stage I ovarian cancer. Ann Oncol 14:1494–1500

    Article  PubMed  CAS  Google Scholar 

  10. Wolf NG, Abdul-Karim FW, Farver C et al (1999) Analysis of ovarian borderline tumors using fluorescence in situ hybridization. Genes Chromosomes Cancer 25:307–315

    Article  PubMed  CAS  Google Scholar 

  11. Blegen H, Einhorn N, Sjövall K et al (2000) Prognostic significance of cell cycle proteins and genomic instability in borderline, early and advanced stage ovarian carcinoma. Int J Gynecol Cancer 10:477–487

    Article  PubMed  Google Scholar 

  12. Dodson MK, Hartmann LC, Cliby WA et al (1993) Comparison of loss of heterozygosity patterns in invasive low-grade and high-grade epithelial ovarian carcinomas. Cancer Res 53:4456–4460

    PubMed  CAS  Google Scholar 

  13. Hu J, Khanna V, Jones MM, Surti U (2002) Genomic imbalances in ovarian borderline and mucinous tumors. Cancer Genet Cytogenet 139:18–23

    Article  PubMed  CAS  Google Scholar 

  14. Pejovic T, Iosif CS, Mitelman F et al (1996) Karyotypic characteristics of borderline malignant tumors of the ovary: trisomy 12, trisomy 7, and r(1) as nonrandom features. Cancer Genet Cytogenet 92:95–98

    Article  PubMed  CAS  Google Scholar 

  15. Kaern J, Tropé CG, Kristensen GB et al (1993) DNA ploidy; the most important prognostic factor in patients with borderline tumors of the ovary. Int J Gynecol Cancer 3:349–358

    Article  PubMed  Google Scholar 

  16. Verbruggen MB, van Diest PJ, Baak JP et al (2009) The prognostic and clinical value of morphometry and DNA cytometry in borderline ovarian tumors: a prospective study. Int J Gynecol Pathol 28:35–40

    Article  PubMed  Google Scholar 

  17. Erhardt K, Auer G, Björkholm E et al (1984) Prognostic significance of nuclear DNA content in serous ovarian tumors. Cancer Res 44:2198–2202

    PubMed  CAS  Google Scholar 

  18. Dietel M, Arps H, Rohlff A et al (1986) Nuclear DNA content of borderline tumors of the ovary: correlation with histology and significance for prognosis. Virchows Arch 409:829–836

    Article  CAS  Google Scholar 

  19. Padberg BC, Arps H, Franke U et al (1992) DNA cytophotometry and prognosis in ovarian tumors of borderline malignancy. A clinicomorphologic study of 80 cases. Cancer 69:2510–2514

    Article  PubMed  CAS  Google Scholar 

  20. deNictolis M, Montironi R, Tommasoni S et al (1992) Serous borderline tumors of the ovary—a clinicopathological, immunohistochemical, and quantitative study of 44 cases. Cancer 70:152–160

    Article  CAS  Google Scholar 

  21. Klemi PJ, Joensuu H, Kilholma P et al (1988) Clinical significance of nuclear DNA content in serous ovarian tumors. Cancer 62:2005–2010

    Article  PubMed  CAS  Google Scholar 

  22. Demirel D, Laucirica R, Fishman A et al (1996) Ovarian tumors of low malignant potential. Correlation of DNA index and S-phase fraction with histopathologic grade and clinical outcome. Cancer 77:1494–1500

    Article  PubMed  CAS  Google Scholar 

  23. Seidman JD, Norris HJ, Griffin JL et al (1993) DNA flow cytometric analysis of serous ovarian tumors of low malignant potential. Cancer 71:3947–3951

    Article  PubMed  CAS  Google Scholar 

  24. Fležar MS, But I, Kavalar R et al (2003) Flow and image cytometric DNA ploidy, including 5c exceeding cells, of serous borderline malignant ovarian tumors. Correlation with clinicopathologic characteristics. Anal Quant Cytol Histol 25:139–145

    PubMed  Google Scholar 

  25. Scheuler JA, Trimbos JB, Burg MVD et al (1996) DNA index reflects biological behavior of ovarian carcinoma stage I–IIa. Gynecol Oncol 63:59–66

    Article  Google Scholar 

  26. Lai C-H, Hseuh S, Chang T-C et al (1996) The role of DNA flow cytometry in borderline malignant ovarian tumors. Cancer 78:794–802

    Article  PubMed  CAS  Google Scholar 

  27. Österberg L, Åkeson M, Levan K et al (2006) Genetic alterations of serous borderline tumors of the ovary compared to stage I serous ovarian carcinomas. Cancer Genet Cytogenet 167:103–108

    Article  PubMed  Google Scholar 

  28. Duesberg P, Rausch C, Rasnick D et al (1998) Genetic instability of cancer cells is proportional to their degree of aneuploidy. Proc Natl Acad Sci U S A 95:13692–13697

    Article  PubMed  CAS  Google Scholar 

  29. Fabarius A, Hehlmann R, Duesberg PH (2003) Instability of chromosome structure in cancer cells increase exponentially with degree of aneuploidy. Cancer Genet Cytogenet 143:59–72

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Mrs. Signe Eastgate and Mrs. Erika Thorbjørnsen for their skillful technical assistance.

Conflict of interest statement

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn Risberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pradhan, M., Davidson, B., Tropé, C.G. et al. Gross genomic alterations differ between serous borderline tumors and serous adenocarcinomas—an image cytometric DNA ploidy analysis of 307 cases with histogenetic implications. Virchows Arch 454, 677–683 (2009). https://doi.org/10.1007/s00428-009-0778-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-009-0778-y

Keywords

Navigation