Skip to main content
Log in

The hippocampal continuation (indusium griseum): its connectivity in the hedgehog tenrec and its status within the hippocampal formation of higher vertebrates

  • Original Article
  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Abstract

The indusium griseum and its precallosal extension are usually considered poorly differentiated portions of the hippocampus. The connections of this so-called ‘hippocampal continuation’ (HCt) have only been analyzed so far in rodents, which show one of the least-developed HCt among mammals. In this study we have investigated the relatively well differentiated HCt of the small Madagascan hedgehog tenrec (Afrotheria) using histochemical and axonal transport techniques. The tenrec’s HCt shows associative and commissural connections. It receives laminar specific afferents from the entorhinal cortex (collaterals from neurons projecting to the dentate area), the anterior and posterior piriform cortices as well as the supramammillary region. A few fibers also originate in the olfactory bulb and the dentate hilus. Among these input areas only the dentate hilus receives a significant reciprocal projection from the HCt. Additional HCt efferents are directed to the subcallosal septum (presumed septohippocampal nucleus), the olfactory tubercle and the islands of Calleja. With the exception of the supramammillary afferents and possible efferents to the supraoptic nucleus we failed, however, to demonstrate distinct thalamic and hypothalamic connections. A comparison of the connections of the HCt with those of the hippocampal subdivisions reveal some similarity between the HCt and the dentate area, but the overall pattern of connectivity does not permit a correlation of the HCt with the dentate area, let alone the cornu ammonis and the subiculum. This view is supported by histochemical findings in the tenrec (immunoreactivity to calcium binding proteins) as well as the rat (data taken from the literature). The HCt is therefore considered a region in its own right within the hippocampal formation. It may be tentatively correlated with the medial cortex of reptiles, while the dentate area and the cornu ammonis may have evolved de novo in mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11A, B
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. The nomenclature used here restricts the term taenia tecta to the region reciprocally connected with the olfactory bulb (Radtke-Schuller and Künzle 2000). Showing a less compact layer 2 and a layer 3 with mainly medium-sized, round neurons; this region is also referred to as the ventral taenia tecta, while the HCtA is called the dorsal taenia tecta (Haberly and Price 1978).

  2. Among the candidate regions (subicular complex, entorhinal cortex) often cited in this respect, the entorhinal cortex is considered here as part of the caudolateral hemisphere which might have evolved in parallel to the Dt and CA. This assumption is made on the basis of: (1) the similarity between the entorhinal cortex and the primary olfactory cortex with regard to their three-layered organization in tenrec (Künzle 2002); (2) the presence of reciprocal connections between the mammalian entorhinal cortex and both the primary olfactory cortex and the olfactory bulb (Amaral and Witter 1995; Haberly 2001). The latter regions are poorly connected with the areas laterally adjacent to the reptilian MDM (Ulinski 1990; Hoogland and VanderZee 1995).

Abbreviations

Acb:

Nucleus accumbens

AChE:

Acetylcholinesterase

Ay:

Amygdala

AyCo:

Cortical amygdala

BDA:

Biotinylated dextran amine

CA:

Cornu ammonis

Cab:

Calbindin

Car:

Calretinin

cc:

Corpus callosum

CCK:

Cholecystokinin

CjC:

Islands of Calleja

CjM:

Insula magna

DgC:

Nuclear complex of diagonal band

Dt:

Dentate area

DtGr/Hi/Mo:

Granule cell layer/hilus/molecular layer of Dt

EnkM:

Met-enkephalin

Et:

Echinops telfairi

ERh:

Entorhinal cortex

ERhD/V:

Dorsal/ventral portion of ERh

gmf:

Granule mossy fiber system

HbM:

Medial habenula

HCt:

Hippocampal continuation

HCtA/D/P:

Anterior/dorsal/posterior portion of HCt

HCtMo(1)/2/3:

First/second/third layer of HCt

Hy:

Hypothalamus

HyA/L:

Anterior/lateral Hy

MCx:

Cortex of medial hemisphere with infralimbic, prelimbic and/or cingulate areas

MDM:

Medial and dorsomedial cortex of reptiles

Mm:

Mammillary region

MmM:

Medial Mm

MmP:

Perimammillary region

NCx:

Neocortex

NPY:

Neuropeptide Y

OfA:

Anterior olfactory nuclear complex

OfB:

Olfactory bulb

Pav:

Parvalbumin

PCx:

Subrhinal paleocortex (numbers refer to zones involved)

PCxD/V:

Dorsal/ventral portion of PCx

ppc:

Proportional prosencephalic coordinates

PRh:

Perirhinal cortex

PSbE:

Presubiculum

rao:

Retrograde and subsequent anterograde transport of BDA in collateral fibers

RCx:

Rhinal cortex (additional numbers refer to zones)

Re:

Reuniens complex

RL:

Rostrolateral thalamus (including presumed equivalents of anterior thalamic nuclei)

RM:

Rostromedial thalamus (including presumed ncl. medialis dorsalis)

Sbi:

Subiculum

Se:

Septum

SeDc:

Subcallosal portion of dorsal Se

SeDm:

Dorsal Se without SeDc

SOp:

Supraoptic nucleus

StP:

Striopallidum

SuP:

Substance P

TrMH:

Transition zone between HCt2 and deep layers of MCx

TT:

Taenia tecta (also referred to as ventral TT)

Tu:

Olfactory tubercle

WGA-HRP:

Wheat germ agglutinin conjugated to horseradish peroxidase

XCx:

Poorly defined area caudally adjacent to RCx

References

  • Abbie AA (1939) The origin of the corpus callosum and the fate of structures related to it. J Comp Neurol 70:9–44

    Google Scholar 

  • Aboitiz F, Montiel J, Morales D, Concha M (2002) Evolutionary divergence of the reptilian and the mammalian brains: considerations on connectivity and development. Brain Res Rev 39:141–153

    Article  PubMed  Google Scholar 

  • Adamek GD, Shipley MT, Sanders MS (1984) The indusium griseum in the mouse: architecture, Timm’s histochemistry and some afferent connections. Brain Res Bull 12:657–668

    Article  CAS  PubMed  Google Scholar 

  • Albright CD, Friedrich CB, Brown EC, Mar MH, Zeisel SH (1999) Maternal dietary choline availability alters mitosis, apoptosis and the localization of TOAD-64 protein in the developing fetal rat septum. Dev Brain Res 115:123–129

    Article  CAS  Google Scholar 

  • Allen GV, Hopkins DA (1989) Mamillary body in the rat: topography and synaptology of projections from the subicular complex, prefrontal cortex and midbrain tegmentum. J Comp Neurol 286:311–337

    CAS  PubMed  Google Scholar 

  • Amaral DG, Witter, MP (1995) Hippocampal formation. In: Paxinos G (ed) The Rat Nervous System, 2nd edn. Academic Press, San Diego pp 443–493

  • Atoji W, Wild JM, Yamamoto Y, Suzuki Y (2002) Intratelencephalic connections of the hippocampus in pigeons (Columba livia). J Comp Neurol 447:177–199

    Article  PubMed  Google Scholar 

  • Bekirov IH, Needleman LA, Zhang W, Benson DL (2002) Identification and localization of multiple classic cadherins in developing rat limbic system. Neuroscience 115:213–227

    Article  CAS  PubMed  Google Scholar 

  • Blasco-Ibanez JM, Freund TF (1997) Distribution, ultrastructure, and connectivity of calretinin-immunoreactive mossy cells of the mouse dentate gyrus. Hippocampus 7:307–320

    Article  CAS  PubMed  Google Scholar 

  • Blumenau L (1891) Zur Entwicklungsgeschichte und feineren Anatomie des Hirnbalkens. Archiv f mikrosk Anat 37:1–15

    Google Scholar 

  • Bruce LL, Neary TJ (1995) Afferent projections to the lateral and dorsomedial hypothalamus in a lizard Gekko gecko. Brain Behav Evol 46:30–42

    CAS  PubMed  Google Scholar 

  • Butler AB, Hodos W (eds) (1996) Comparative Vertebrate Neuroanatomy. Evolution and Adaptation. Wiley, New York

  • Cassell MD, Brown MW (1984) The distribution of Timm’s stain in the nonsulphide-perfused human hippocampal formation. J Comp Neurol 222:461–471

    PubMed  Google Scholar 

  • Cassell MD, Wright DJ (1986) Topography of projections from the medial prefrontal cortex to the amygdala in the rat. Brain Res Bull 17:321–333

    Article  CAS  PubMed  Google Scholar 

  • Cavada C, Company T, Tejedor J, Cruz-Rizzolo RJ, Reinoso-Suarez F (2000) The anatomical connections of the macaque monkey orbitofrontal cortex. A review. Cerebral Cortex 10:220–242

    Article  CAS  PubMed  Google Scholar 

  • Celio MR (1990) Calbindin D-28 k and parvalbumin in the rat nervous system. Neuroscience 35:375–475

    CAS  PubMed  Google Scholar 

  • Charnay Y, Leger L, Vallet PG, Hof PR, Jouvet M, Bouras C (1995) (3H)Nisoxetine binding sites in the cat brain: an autoradiographic study. Neuroscience 69:259–270

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Aston-Jones G (1998) Axonal collateral-collateral transport of tract tracers in brain neurons: false anterograde labelling and useful tool. Neuroscience 82:1151–1163

    Article  CAS  PubMed  Google Scholar 

  • Conde F, Mairelepoivre E, Audinat E, Crepel F (1995) Afferent connections of the medial frontal cortex of the rat. 2. Cortical and subcortical afferents. J Comp Neurol 352:567–593

    CAS  PubMed  Google Scholar 

  • Das GD (1971) Experimental studies on the postnatal development of the brain. I. Cytogenesis and morphogenesis of the accessory fascia dentata following hippocampal lesions. Brain Res 28:263–282

    Article  CAS  PubMed  Google Scholar 

  • Desan PH (1988) Organization of the cerebral cortex in turtle. In: Schwerdtfeger WK, Smeets WJAJ, (eds) The Forebrain of Reptiles. Karger, Basel pp 1–11

  • Douady CJ, Douzery EJP (2003) Molecular estimation of eulipotyphlan divergence times and the evolution of “Insectivora”. Mol Phylogen Evol 28:285–296

    Article  CAS  Google Scholar 

  • Fallon JH, Loughlin SE, Ribak CE (1983) The islands of Calleja complex of rat basal forebrain. III. Histochemical evidence for a striatopallidal system. J Comp Neurol 218:91–120

    CAS  PubMed  Google Scholar 

  • Fernandez AS, Pieau C, Repérant J, Boncinelli E, Wassef M (1998) Expression of the Emx-1 and Dlx-1 homebox genes define three molecularly distinct domains in the telencephalon of mouse, chick, turtle and frog embryos: implications for the evolution of telencephalic subdivisions in amniotes. Development 125:2099–2111

    CAS  PubMed  Google Scholar 

  • Finch DM (1993) Hippocampal, subicular, and entorhinal afferents and synaptic integration in rodent cingulate cortex. In: Vogt B, Gabriel M, Gabriel M (eds) Neurobiology of Cingulate Cortex and Limbic Thalamus. Birkhäuser, Berlin, pp 224–248

  • Fish PA (1893) The indusium of the callosum. J Comp Neurol 3:61–68

    Google Scholar 

  • Floyd NS, Price JL, Ferry AT, Keay KA, Bandler R (2001) Orbitomedial prefrontal cortical projections to hypothalamus in the rat. J Comp Neurol 432:307–328

    Article  CAS  PubMed  Google Scholar 

  • Flügge G, Schniewind A, Fuchs E (1988) The corticosterone receptive system in the brain of Tupaia belangeri visualized by in vivo autoradiography. Expl Brain Res 72:417–424

    Google Scholar 

  • Font C, Martínez-Marcos A, Lanuza E, Hoogland PV, Martínez-Garcia F (1997) Septal complex of the telencephalon of the lizard Podarcis hispanica. J Comp Neurol 383:489–511

    Article  CAS  PubMed  Google Scholar 

  • Font C, Lanuza E, Martinez-Marcos A, Hoogland PV, Martinez-Garcia F (1998) Septal complex of the telencephalon of lizards: III. Efferent connections and general discussion. J Comp Neurol 401:525–548

    Article  CAS  PubMed  Google Scholar 

  • Gall CM, Berschauer R, Isackson PJ (1994) Seizures increase basic fibroblast growth factor mRNA in adult rat forebrain neurons and glia. Mol Brain Res 21:190–205

    Article  CAS  PubMed  Google Scholar 

  • Gaykema RPA, Lutten PGM, Nyakas C (1990) Cortical projection patterns of the medial septum-diagonal band complex. J Comp Neurol 293:103–125

    CAS  PubMed  Google Scholar 

  • Gloor P (ed) (1997) The Temporal Lobe and Limbic System. Oxford University Press, New York

  • Haberly LB (2001) Parallel-distributed processing in olfactory cortex: new insights from morphological and physiological analysis of neuronal circuitry. Chem Senses 26:551–576

    Article  CAS  PubMed  Google Scholar 

  • Haberly LB, Price, JL (1978) Association and commissural fiber systems of the olfactory cortex of the rat. II. Systems originating in the olfactory peduncle. J Comp Neurol 181:781–808

    CAS  PubMed  Google Scholar 

  • Haglund L, Swanson LW, Köhler C (1984) The projection of the supramammillary nucleus to the hippocampal formation: An immunohistochemical anterograde transport study with the lectin PHA-L in the rat. J Comp Neurol 229:171–185

    CAS  PubMed  Google Scholar 

  • Hamel EG (1982) Telencephalon of marsupials. In: Crosby E, Schnitzlein H, Schnitzlein H. (eds) Comparative Correlative Neuroanatomy of the Vertebrate Telencephalon. MacMillan, New York, pp 317–335

  • Higuchi T, Okere CO (2002) Role of the supraoptic nucleus in regulation of parturition and milk ejection revisited. Microsc Res Tech 56:113–121

    Article  CAS  PubMed  Google Scholar 

  • Hjorth-Simonsen A (1972) Projection of the lateral part of the entorhinal area to the hippocampus and fascia dentata. J Comp Neurol 146:219–232

    CAS  PubMed  Google Scholar 

  • Hoogland PV, Vermeulen-Vanderzee E (1989) Efferent connections of the dorsal cortex of the lizard Gekko gecko studied with Phaseolus vulgaris - leucoagglutinin. J Comp Neurol 285:289–303

    CAS  PubMed  Google Scholar 

  • Hoogland PV, Vermeulen-Vanderzee E (1993) Medial cortex of the lizard Gekko-gecko - a hodological study with emphasis on regional specialization. J Comp Neurol 331:326–338

    CAS  PubMed  Google Scholar 

  • Hoogland PV, Vermeulen-Vanderzee E (1995) Efferent connections of the lateral cortex of the lizard Gekko gecko: evidence for separate origins of medial and lateral pathways from the lateral cortex to the hypothalamus. J Comp Neurol 352:469–480

    CAS  PubMed  Google Scholar 

  • Hori A, Peiffer J, Peiffer RA, Lizuka R (1980) Cerebello-cortical heterotopia in dentate nucleus, and other microdysgeneses in trisomy DI (Patau) syndrome. Brain Dev 2:345–352

    CAS  PubMed  Google Scholar 

  • Hurley KM, Herbert H, Moga MM, Saper CB (1991) Efferent projections of the infralimbic cortex of the rat. J Comp Neurol 308:249–277

    CAS  PubMed  Google Scholar 

  • Hyland BI, Sirett NE, Hubbard JI (1986) Electrophysiological evidence for a projection from medial pre-frontal and anterior limbic cortex toward the medial preoptic area in the cat. Exp Brain Res 63:205–215

    CAS  PubMed  Google Scholar 

  • Ino T, Yasui Y, Itoh K, Nomura S, Akiguchi T, Kameyama M, Mizuno N (1987) Direct projections from ammon’s horn to the septum in the cat. Exp Brain Res 68: 179–188

    CAS  PubMed  Google Scholar 

  • Irle E, Markowitsch HJ (1982) Connections of the hippocampal formation, mammillary bodies, anterior thalamus and cingulate cortex. Exp Brain Res 47:79–94

    CAS  PubMed  Google Scholar 

  • Ishizuka N (2001) Laminar organization of the pyramidal cell layer of the subiculum in the rat. J Comp Neurol 435:89–110

    CAS  PubMed  Google Scholar 

  • Ito A, Saito N, Hirata M, Kose A, Tsujino T, Yoshihara C, Ogita K, Kishimoto A, Nishizuka Y, Tanaka C (1990) Immunocytochemical localization of a subspecies of protein kinase C in rat brain. Proc Natl Acad Sci USA 87:3195–3199

    CAS  PubMed  Google Scholar 

  • Jay TM, Witter MP (1991) Distribution of hippocampal CA1 and subicular efferents in the prefrontal cortex of the rat studied by means of anterograde transport of Phaseolus-vulgaris-leucoagglutinin. J Comp Neurol 313:574–587

    CAS  PubMed  Google Scholar 

  • Johnston JB (1913) The morphology of the septum, hippocampus, and pallial commissures in reptiles and mammals. J Comp Neurol 23:371–478

    Google Scholar 

  • Kloosterman F, Witter MP, van Haeften T (2003) Topographical and laminar organization of subicular projections to the parahippocampal region of the rat. J Comp Neurol 455:156–171

    Article  PubMed  Google Scholar 

  • Kuhlenbeck H (1977) Derivatives of the Prosencephalon: Diencephalon and Telencephalon. The Central Nervous System of Vertebrates, vol 5, part I. Karger, Basel, pp 1–888

    Google Scholar 

  • Künzle H (1998) Thalamic territories innervated by cerebellar nuclear afferents in the hedgehog tenrec, Echinops telfairii. J Comp Neurol 402:313–326

    Article  PubMed  Google Scholar 

  • Künzle H (2002) Distribution of perihippocampo-hippocampal projection neurons in the lesser hedgehog tenrec. Neurosci Res 44:405–419

    Article  PubMed  Google Scholar 

  • Künzle H (2003) Neocortical connections with perihippocampal and periamygdalar regions in the hedgehog tenrec. Anat Embryol 207:389–407

    Article  PubMed  Google Scholar 

  • Künzle H, Rehkämper G (1992) Distribution of cortical neurons projecting to dorsal column nuclear complex and spinal cord in the hedgehog-tenrec, Echinops telfairi. Somatosens Mot Res 9:185–197

    PubMed  Google Scholar 

  • Künzle H, Radtke-Schuller S (2000) Basal telencephalic regions connected with the olfactory bulb in the Madagascan hedgehog tenrec. J Comp Neurol 423:706–726

    Article  PubMed  Google Scholar 

  • Künzle H, Radtke-Schuller S (2001) Hippocampal fields in the hedgehog tenrec. Their architecture and major intrinsic connections. Neurosci Res 41:267–291

    Article  PubMed  Google Scholar 

  • Künzle H, Radtke-Schuller S, von Stebut B (2002) Parabrachio-cortical connections with the lateral cerebral hemisphere in the Madagascan hedgehog tenrec: prominent projections to layer 1, weak projections from layer 6. Brain Res Bull 57:705–719

    Article  PubMed  Google Scholar 

  • Lanuza E, Halpern M (1998) Efferents and centrifugal afferents of the main and accessory olfactory bulbs in the snake Thamnophis sirtalis. Brain Behav Evol 51:1-22

    Article  CAS  PubMed  Google Scholar 

  • Li XG, Somogyi P, Ylinen A, Buzsáki G (1994) The hippocampal CA3 network: an in vivo intracellular labeling study. J Comp Neurol 339:181–208

    CAS  PubMed  Google Scholar 

  • Lippa CF, Smith TW (1992) The indusium griseum in Alzheimer’s disease: an immunocytochemical study. J Neurol Sci 111:39–45

    Article  CAS  PubMed  Google Scholar 

  • Llewellyn-Smith IJ, Pilowsky P, Minson JB (1993) The tungstate-stabilized tetramethylbenzidine reaction for light and electron microscopic immunocytochemistry and for revealing biocytin-filled neurons. J Neurosci Meth 46:27–40

    Article  CAS  Google Scholar 

  • Lohman AHM, van Woerden-Verkley I (1978). Ascending connections to the forebrain in the Tegu lizard. J Comp Neurol 182:555–574

    CAS  PubMed  Google Scholar 

  • Lohman AHM, Smeets WJAJ (1993) Overview of the main and accessory olfactory bulb projections in reptiles. Brain Behav Evol 41:147–155

    CAS  PubMed  Google Scholar 

  • Lopez-Garcia C, Martinez-Guijaro FJ, Berbel P, Garcia-Verdugo JM (1988). Long-spined polymorphic neurons of the medial cortex of lizards: a Golgi, Timm and electron-microscopic study. J Comp Neurol 272:409–423

    CAS  PubMed  Google Scholar 

  • Luskin MB, Price JL (1983) The laminar distribution of intracortical fibers originating in the olfactory cortex of the rat. J Comp Neurol 216:292–302

    CAS  PubMed  Google Scholar 

  • Martinez-Garcia F, Amiguet M, Olucha F, Lopez-Garcia C (1986) Connections of the lateral cortex in the lizard Podarcis hispanica. Neurosci Lett 63:39–44

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Garcia F, Olucha FE (1988) Afferent projections to the Timm-positive cortical areas of the telencephalon of lizards. In: Schwerdtfeger W, Smeets WJAJ (eds) Recent advances in understanding the structure and function of the forebrain in reptiles. Karger, Basel, pp 30–40

  • Martinez-Guijarro FJ, Desfilis E, Lopez-Garcia C (1990) Organization of the dorsomedial cortex in the lizard Podarcis hispanica. Expl Brain Res 19:77–92

    Google Scholar 

  • McIntyre DC, Kelly ME, Staines WA (1996) Efferent projections of the anterior perirhinal cortex in the rat. J Comp Neurol 369:302–318

    Article  CAS  PubMed  Google Scholar 

  • Merchenthaler I, Görcs T, Sétáló G (1982) Neurons containing luteinizing hormone-releasing hormone in the indusium griseum of the rat. Acta Morph Acad Sci Hung 30:151–156

    CAS  Google Scholar 

  • Merchenthaler I, Görcs T, Sétáló P, Tetrusz P, Flerkó B (1984) Gonadotropin-releasing hormone (GnRH) neurons and pathways in the rat brain. Cell Tiss Res 237:15–29

    CAS  Google Scholar 

  • Monaghan DT, Yao D, Cotman CW (1984) Distribution of (3H)AMPA binding sites in rat brain as determined by quantitative autoradiography. Brain Res 324:160–164

    Article  CAS  PubMed  Google Scholar 

  • Montagnese CM, Krebs JR, Meyer G (1996) The dorsomedial and dorsolateral forebrain of the zebra finch, Taeniopygia guttata: a Golgi study. Cell Tiss Res 283:263–282

    Article  CAS  Google Scholar 

  • Moser MB, Moser EI (1998) Functional differentiation in the hippocampus. Hippocampus 8:608–619

    Article  CAS  PubMed  Google Scholar 

  • Nakada T (1999) High-field, high-resolution MR imaging of the human indusium griseum. AJNR Am J Neuroradiol 20:524–525

    CAS  PubMed  Google Scholar 

  • Nambu T, Sakurai T, Sakurai T, Mizukami K, Hosoya Y, Yanagisawa M, Goto K (1999) Distribution of orexin neurons in the adult rat brain. Brain Res 827:243–260

    CAS  PubMed  Google Scholar 

  • Nikaido M, Cao Y, Okada N, Hasegaswa M (2003) The phylogenetic relationships of insectivores with special reference to the lesser hedgehog tenrec as inferred from the complete sequence of theri mitochondrial genome. Genes Genet Syst 78:107–112

    Article  CAS  PubMed  Google Scholar 

  • Obersteiner H (1888) Anleitung beim Studium des Baues der nervösen Centralorgane im gesunden und kranken Zustande. Toeplitz, Leipzig

  • Ohtake T, Yamada H (1989) Efferent connections of the nucleus reuniens and the rhomboid nucleus in the rat: an anterograde PHA-L tracing study. Neurosci Res 6:556–569

    Article  CAS  PubMed  Google Scholar 

  • Pasquier DA, Reinoso-Suarez F (1978) The topographic organization of hypothalamic and brain stem projections to the hippocampus. Brain Res Bull 3:373–389

    Article  CAS  PubMed  Google Scholar 

  • Puelles L, Kuwana E, Puelles E, Bulfone A, Shimamura K, Keleher J, Smiga S, Rubenstein JLR (2000) Pallial and subpallial derivates in the embryonic chick and mouse telencephalon, traced by the expression of the genes DIx-2, Emx-1, Nkx-2.1, Pax-6, and Tbr-1. J Comp Neurol 424:409–438

    Article  CAS  PubMed  Google Scholar 

  • Rabhi M, Stoeckel ME, Calas A, Freund-Mercier MJ (1999) Historadioautographic localisation of oxytocin and vasopressin binding sites of the merione (Meriones shawi).Brain Res Bull 48:147–163

    Article  CAS  PubMed  Google Scholar 

  • Radtke-Schuller S, Künzle H (2000) Olfactory bulb and retrobulbar regions in the hedgehog tenrec. Their organization and interconnections. J Comp Neurol 423:687–705

    Article  CAS  PubMed  Google Scholar 

  • Reep RL, Goodwin GS, Corwin JV (1990) Topographic organization in the corticocortical connections of medial agranular cortex in rats. J Comp Neurol 294:262–281

    CAS  PubMed  Google Scholar 

  • Room P, Groenewegen HJ (1986) Connections of the parahippocampal cortex. I. Cortical afferents. J Comp Neurol 251:415–450

    CAS  PubMed  Google Scholar 

  • Room P, Russchen FT, Groenewegen HJ, Lohman AHM (1985) Efferent connections of the prelimbic (area 32) and the infralimbic (area 25) cortices: an anterograde tracing study in the cat. J Comp Neurol 242:40–55

    CAS  PubMed  Google Scholar 

  • Rose M (1926) Der Allocortex bei Tier und Mensch. J Psychol Neurol 34:1–99

    Google Scholar 

  • Ruit KG, Neafsey EJ (1990) Hippocampal input to a “visceral motor” corticobulbar pathway: an anatomical and electrophysiological study in the rat. Exp Brain Res 82:606–616

    CAS  PubMed  Google Scholar 

  • Schmued LC, Bowyer JF (1997) Methamphetamine exposure can produce neuronal degeneration in mouse hippocampal remnants. Brain Res 759:135–140

    CAS  PubMed  Google Scholar 

  • Sesack SR, Deutch AY, Roth RH, Bunney BS (1989) Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: an anterograde tract-tracing study with Phaseolus vulgaris leucoagglutinin. J Comp Neurol 290:213–242

    PubMed  Google Scholar 

  • Shibata H (1989) Descending projections to the mammillary nuclei in the rat, as studied by retrograde and anterograde transport of wheat germ agglutinin-horseradish peroxidase. J Comp Neurol 285:436–453

    CAS  PubMed  Google Scholar 

  • Shibata H (1993) Efferent projections from the anterior thalamic nuclei to the cingulate cortex in the rat. J Comp Neurol 330:533–542

    CAS  PubMed  Google Scholar 

  • Shipley MT, Adamek GD (1984) The connections of the mouse olfactory bulb: a study using orthograde and retrograde transport of wheat germ agglutinin conjugated to horseradish peroxidase. Brain Res Bull 12:669–688

    CAS  PubMed  Google Scholar 

  • Shipley MT, Ennis M (1996) Functional organization of olfactory system. J Neurobiol 30:123–176

    Article  CAS  PubMed  Google Scholar 

  • Smith GE (1897) The morphology of the indusium and striae lancisii. Anat Anzeiger 13:23–27

    Google Scholar 

  • Stephan H (1975) Allocortex. In: Bargmann W (ed) Handbuch der mikr. Anatomie des Menschen, vol 4, Teil 9. Springer, Berlin, Heidelberg, New York p 998

  • Stephan H, Baron G, Frahm HD (1991) Insectivora. Comp Brain Res Mammals vol 1. Springer, Berlin, Heidelberg, New York p 573

  • Stumpf WE, Heiss C, Sar M, Duncan GE, Craver C (1989) Dexamethasone and corticosterone receptor sites. Histochem 92:201–210

    CAS  Google Scholar 

  • Sturrock RR (1978) Development of the indusium griseum. III. An autoradiographic study of cell production. J Anat 126:1–6

    CAS  PubMed  Google Scholar 

  • Swanson LW, Hartman BK (1975) The central adrenergic system. An immunofluorescence study of the location of cell bodies and their efferent connections in the rat utilizing dopamine-B-hydroxylase as a marker. J Comp Neurol 163:467–506

    CAS  PubMed  Google Scholar 

  • Swanson LW, Köhler C (1986) Anatomical evidence for direct projections from the entorhinal area to the entire cortical mantle in the rat. J Neurosci 6:3010–3023

    CAS  PubMed  Google Scholar 

  • Szekely AD (1999) The avian hippocampal formation: subdivisions and connectivity. Behav Brain Res 98:219–225

    Article  CAS  PubMed  Google Scholar 

  • Takagishi M, Chiba T (1991) Efferent projections of the infralimbic (area 25) region of the medial prefrontal cortex in the rat: an anterograde tracer PHA-L study. Brain Res 566:26–39

    Article  CAS  PubMed  Google Scholar 

  • Tamamaki N, Nojyo Y (1995) Preservation of topography in the connections between the subiculum, field CA1, and the entorhinal cortex in rats. J Comp Neurol 353:379–390

    CAS  PubMed  Google Scholar 

  • Tilney F (1939) The hippocampus and its relations to the corpus callosum. J nerv ment Disease 89:433–513

    Google Scholar 

  • Tömböl T, Davies DC, Németh A, Sebestény T (2000) A comparative Golgi study of chicken (Gallus domesticus) and homing pigeon (Columba livia) hippocampus. Anat Embryol 201:85–101

    PubMed  Google Scholar 

  • Tole S, Grove EA (2001) Detailed field pattern is intrinsic to the embryonic mouse hippocampus early in neurogenesis. J Neurosci 21:1580–1588

    CAS  PubMed  Google Scholar 

  • Travis NMG (1982) Telencephalon of an edentate. In: Crosby E, Schnitzlein H (eds), Comparative Correlative Neuroanatomy of the Vertebrate Telencephalon. MacMillan, New York, pp 338–373

  • Ulinski PS (1990) The cerebral cortex of reptiles. In: Jones EG, Peters A (eds) Cerebral Cortex, vol 8A. Plenum, New York pp 139–205

  • Van der Werf YD, Witter MP, Groenewegen HJ (2002) The intralaminar and midline nuclei of the thalamus. Anatomical and functional evidence for participation in processes of arousal and awareness. Brain Res Rev 39:107–140

    Article  PubMed  Google Scholar 

  • Van Groen T, Wyss JM (1990) Extrinsic projections from area CA1 of the rat hippocampus: olfactory, cortical, subcortical, and bilateral hippocampal formation projections. J Comp Neurol 302:515–528

    PubMed  Google Scholar 

  • Van Groen T, Kadish I, Wyss JM (1999) Efferent connections of the anteromedial nucleus of the thalamus of the rat. Brain Res Rev 30:1–26

    Article  PubMed  Google Scholar 

  • Van Hoesen GW, Mesulam MM, Haaxma R (1976) Temporal cortical projections to the olfactory tubercle in the rhesus monkey. Brain Res 109: 375–381

    Article  PubMed  Google Scholar 

  • Vertes RP (1992) PHA-L analysis of projections from the supramammillary nucleus in the rat. J Comp Neurol 326:595–622

    CAS  PubMed  Google Scholar 

  • Vertes RP (2002) Analysis of projections from the medial prefrontal cortex to the thalamus in the rat, with emphasis on nucleus reuniens. J Comp Neurol 442:163–187

    Google Scholar 

  • Weaver DR, Deeds JD, Lee K, Segre GV (1995) Localization of parathyroid hormone-related peptide (PTHrP) and PTH/PTHrP receptor mRNAs in rat brain. Mol Brain Res 28:296–310

    Article  CAS  PubMed  Google Scholar 

  • Witter MP, Wouterlood FG, Naber PA, van Haeften T (2000) Anatomical organization of the parahippo-campal-hippocampal network. In: Scharfman H, Witter M, Schwarcz R (eds) The Parahippocampal Region, Implications for Neurological and Psychiatric Diseases. Ann NY Acad Sci 911:1–24

    CAS  PubMed  Google Scholar 

  • Woods WH, Holland RC, Powell EW (1969) Connections of cerebral structures functioning in neurohypophysial hormone release. Brain Res 12:26–46

    Article  CAS  PubMed  Google Scholar 

  • Wouterlood FG, Saldana E, Witter MP (1990) Projection from the nucleus reuniens thalami to the hippocampal region: light and electron microscopic tracing study in the rat with the anterograde tracer Phaseolus vulgaris-leucoagglutinin. J Comp Neurol 296:179–203

    CAS  PubMed  Google Scholar 

  • Wyss JM, Sripanidkulchai K (1983) The indusium griseum and anterior hippocampal continuation in the rat. J Comp Neurol 219:251–272

    CAS  PubMed  Google Scholar 

  • Yanagihara M, Niimi K, Ono K (1987) Thalamic projections to the hippocampal and entorhinal areas in the cat. J Comp Neurol 266:122–141

    CAS  PubMed  Google Scholar 

  • Zhao XY, Lein ES, He AQ, Smith SC, Aston C, Gage FH (2001) Transcriptional profiling reveals strict boundaries between hippocampal subregions. J Comp Neurol 441:187–196

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The excellent technical assistance of Angelika Antonius, Antonija Nekic and Sigi Schaller is gratefully acknowledged. The author has also appreciated the help of S. Kerling, A. Klaus and B. Reyermann. The work was supported by the Deutsche Forschungsgemeinschaft, grant Ku 624/3–1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Künzle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Künzle, H. The hippocampal continuation (indusium griseum): its connectivity in the hedgehog tenrec and its status within the hippocampal formation of higher vertebrates. Anat Embryol 208, 183–213 (2004). https://doi.org/10.1007/s00429-004-0384-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-004-0384-3

Keywords

Navigation