Skip to main content
Log in

Combinatorial topography and cell-type specific regulation of the ERK pathway by dopaminergic agonists in the mouse striatum

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Therapeutic agents and drugs of abuse regulate the extracellular signal-regulated kinase (ERK) cascade signaling in the medium-sized spiny neurons (MSNs) of the striatum. However, whether this regulation is associated with specific cortical and thalamic inputs has never been studied. We used Drd2-EGFP BAC-transgenic mice to undertake a topographical and cell-type specific analysis of ERK phosphorylation and two of its downstream targets histone H3 and ribosomal protein S6 (rS6) in the dorsal striatum following injection of SKF81297 (D1R-like agonist), quinpirole (D2R-like agonist) or apomorphine (non selective DA receptor agonist). In striatal areas receiving inputs from the cingulate/prelimbic, visual and auditory cortex, SKF81297 treatment increased phosphorylation of ERK, histone H3 and rS6 selectively in EGFP-negative MSNs of Drd2-EGFP mice. In contrast, no regulation was found in striatal region predominantly targeted by the sensorimotor and motor cortex. Apomorphine slightly enhanced ERK and rS6, but not histone H3 phosphorylation. This regulation occurred exclusively in EGFP-negative neurons mostly in striatal sectors receiving connections from the insular, visual and auditory cortex. Quinpirole administration inhibited basal ERK activation but did not change histone H3 and rS6 phosphorylation throughout the rostrocaudal axis of the dorsal striatum. This anatomo-functional study indicates that D1R and D2R agonists produce a unique topography and cell-type specific regulation of the ERK cascade signaling in the mouse striatum, and that those patterns are closely associated with particular cortical and thalamic inputs. This work evidences the need of a precise identification of the striatal areas under study to further understand striatal plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

A:

Auditory cortex

AI:

Agranular insular cortex

Cg:

Cingulate cortex

CL:

Centrolateral nucleus

D1R:

Dopamine 1 receptor

D2R:

Dopamine 2 receptor

EGFP:

Enhanced green fluorescent protein

ERK:

Extracellular signal-regulated kinase

H3:

Histone H3

IL:

Infralimbic cortex

IMD:

Intermediodorsal nucleus

LO:

Lateral orbital cortex

M1/M2:

Motor cortex

MGm:

Medial geniculate nucleus

MSNs:

Medium-sized spiny neurons

PC:

Paracentral nucleus

PFdl:

Dorsolateral parafascicular nucleus

PFvl:

Ventral lateral parafascicular nucleus

PFm:

Medial parafascicular nucleus

PIL:

Posterior intralaminar nucleus

PL:

Prelimbic cortex

PV:

Paraventricular nucleus

rS6:

Ribosomal protein S6

S:

Somatosensory cortex

V:

Visual cortex

References

  • Alcantara AA, Chen V, Herring BE, Mendenhall JM, Berlanga ML (2003) Localization of dopamine D2 receptors on cholinergic interneurons of the dorsal striatum and nucleus accumbens of the rat. Brain Res 986:22–29

    Article  PubMed  CAS  Google Scholar 

  • Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13:266–271

    Article  PubMed  CAS  Google Scholar 

  • Arnauld E, Jeantet Y, Arsaut J, Demotes-Mainard J (1996) Involvement of the caudal striatum in auditory processing: c-fos response to cortical application of picrotoxin and to auditory stimulation. Brain Res Mol Brain Res 41:27–35

    Article  PubMed  CAS  Google Scholar 

  • Bagetta V, Picconi B, Marinucci S, Sgobio C, Pendolino V, Ghiglieri V, Fusco FR, Giampa C, Calabresi P (2011) Dopamine-dependent long-term depression is expressed in striatal spiny neurons of both direct and indirect pathways: implications for Parkinson’s disease. J Neurosci 31:12513–12522

    Article  PubMed  CAS  Google Scholar 

  • Beckstead RM (1988) Association of dopamine D1 and D2 receptors with specific cellular elements in the basal ganglia of the cat: the uneven topography of dopamine receptors in the striatum is determined by intrinsic striatal cells, not nigrostriatal axons. Neuroscience 27:851–863

    Article  PubMed  CAS  Google Scholar 

  • Beckstead RM, Kersey KS (1985) Immunohistochemical demonstration of differential substance P-, met-enkephalin-, and glutamic-acid-decarboxylase-containing cell body and axon distributions in the corpus striatum of the cat. J Comp Neurol 232:481–498

    Article  PubMed  CAS  Google Scholar 

  • Berendse HW, Galis-de Graaf Y, Groenewegen HJ (1992) Topographical organization and relationship with ventral striatal compartments of prefrontal corticostriatal projections in the rat. J Comp Neurol 316:314–347

    Article  PubMed  CAS  Google Scholar 

  • Bertran-Gonzalez J, Bosch C, Maroteaux M, Matamales M, Herve D, Valjent E, Girault JA (2008) Opposing patterns of signaling activation in dopamine D1 and D2 receptor-expressing striatal neurons in response to cocaine and haloperidol. J Neurosci 28:5671–5685

    Article  PubMed  CAS  Google Scholar 

  • Bertran-Gonzalez J, Hervé D, Girault JA, Valjent E (2010) What is the degree of segregation between striatonigral and striatopallidal projections? Front Neuroanat 4. pii:136

  • Bertran-Gonzalez J, Hakansson K, Borgkvist A et al (2009) Histone H3 phosphorylation is under the opposite tonic control of dopamine D2 and adenosine A2A receptors in striatopallidal neurons. Neuropsychopharmacology 34:1710–1720

    Article  PubMed  CAS  Google Scholar 

  • Bolam JP, Hanley JJ, Booth PA, Bevan MD (2000) Synaptic organisation of the basal ganglia. J Anat 196(Pt 4):527–542

    Article  PubMed  CAS  Google Scholar 

  • Brami-Cherrier K, Roze E, Girault JA, Betuing S, Caboche J (2009) Role of the ERK/MSK1 signalling pathway in chromatin remodelling and brain responses to drugs of abuse. J Neurochem 108:1323–1335

    Article  PubMed  CAS  Google Scholar 

  • Brami-Cherrier K, Valjent E, Garcia M, Pages C, Hipskind RA, Caboche J (2002) Dopamine induces a PI3-kinase-independent activation of Akt in striatal neurons: a new route to cAMP response element-binding protein phosphorylation. J Neurosci 22:8911–8921

    PubMed  CAS  Google Scholar 

  • Brami-Cherrier K, Valjent E, Herve D, Darragh J, Corvol JC, Pages C, Arthur SJ, Girault JA, Caboche J (2005) Parsing molecular and behavioral effects of cocaine in mitogen- and stress-activated protein kinase-1-deficient mice. J Neurosci 25:11444–11454

    Article  PubMed  CAS  Google Scholar 

  • Centonze D, Usiello A, Gubellini P, Pisani A, Borrelli E, Bernardi G, Calabresi P (2002) Dopamine D2 receptor-mediated inhibition of dopaminergic neurons in mice lacking D2L receptors. Neuropsychopharmacology 27:723–726

    Article  PubMed  CAS  Google Scholar 

  • Chesselet MF, Graybiel AM (1983) Met-enkephalin-like and dynorphin-like immunoreactivities of the basal ganglia of the cat. Life Sci 33(Suppl 1):37–40

    Article  PubMed  CAS  Google Scholar 

  • Choe ES, Wang JQ (2001) Group I metabotropic glutamate receptors control phosphorylation of CREB, Elk-1 and ERK via a CaMKII-dependent pathway in rat striatum. Neurosci Lett 313:129–132

    Article  PubMed  CAS  Google Scholar 

  • Corvol JC, Valjent E, Pascoli V, Robin A, Stipanovich A, Luedtke RR, Belluscio L, Girault JA, Herve D (2007) Quantitative changes in Galphaolf protein levels, but not D1 receptor, alter specifically acute responses to psychostimulants. Neuropsychopharmacology 32:1109–1121

    Article  PubMed  CAS  Google Scholar 

  • Crittenden JR, Graybiel AM (2011) Basal Ganglia disorders associated with imbalances in the striatal striosome and matrix compartments. Front Neuroanat 5:59

    Article  PubMed  Google Scholar 

  • Deniau JM, Thierry AM (1997) Anatomical segregation of information processing in the rat substantia nigra pars reticulata. Adv Neurol 74:83–96

    PubMed  CAS  Google Scholar 

  • Doig NM, Moss J, Bolam JP (2010) Cortical and thalamic innervation of direct and indirect pathway medium-sized spiny neurons in mouse striatum. J Neurosci 30:14610–14618

    Article  PubMed  CAS  Google Scholar 

  • Doly S, Bertran-Gonzalez J, Callebert J et al (2009) Role of serotonin via 5-HT2B receptors in the reinforcing effects of MDMA in mice. PLoS One 4:e7952

    Article  PubMed  Google Scholar 

  • Fink JS, Weaver DR, Rivkees SA, Peterfreund RA, Pollack AE, Adler EM, Reppert SM (1992) Molecular cloning of the rat A2 adenosine receptor: selective co-expression with D2 dopamine receptors in rat striatum. Brain Res Mol Brain Res 14:186–195

    Article  PubMed  CAS  Google Scholar 

  • Franklin K, Paxinos G (2007) The mouse brain in stereotaxic coordinates, 3rd edn. Elsevier

  • Fujiyama F, Unzai T, Nakamura K, Nomura S, Kaneko T (2006) Difference in organization of cortistriatal and thalamostriatal synapses between patch and matrix compartments of rat neostriatum. Eur J Neurosci 24:2813–2824

    Article  PubMed  Google Scholar 

  • Gangarossa G, Di Benedetto M, O’Sullivan GJ et al (2011) Convulsant doses of a dopamine D1 receptor agonist result in Erk-dependent increases in Zif268 and Arc/Arg3.1 expression in mouse dentate gyrus. PLoS One 6:e19415

    Article  PubMed  CAS  Google Scholar 

  • Gerfen CR (1984) The neostriatal mosaic: compartmentalization of corticostriatal input and striatonigral output systems. Nature 311:461–464

    Article  PubMed  CAS  Google Scholar 

  • Gerfen CR (1992) The neostriatal mosaic: multiple levels of compartmental organization. Trends Neurosci 15:133–139

    Article  PubMed  CAS  Google Scholar 

  • Gerfen CR, Baimbridge KG, Miller JJ (1985) The neostriatal mosaic: compartmental distribution of calcium-binding protein and parvalbumin in the basal ganglia of the rat and monkey. Proc Natl Acad Sci USA 82:8780–8784

    Google Scholar 

  • Gerfen CR, Engber TM, Mahan LC, Susel Z, Chase TN, Monsma FJ Jr, Sibley DR (1990) D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250:1429–1432

    Article  PubMed  CAS  Google Scholar 

  • Gerfen CR, Miyachi S, Paletzki R, Brown P (2002) D1 dopamine receptor supersensitivity in the dopamine-depleted striatum results from a switch in the regulation of ERK1/2/MAP kinase. J Neurosci 22:5042–5054

    PubMed  CAS  Google Scholar 

  • Gerfen CR, Paletzki R, Worley P (2008) Differences between dorsal and ventral striatum in Drd1a dopamine receptor coupling of dopamine- and cAMP-regulated phosphoprotein-32 to activation of extracellular signal-regulated kinase. J Neurosci 28:7113–7120

    Article  PubMed  CAS  Google Scholar 

  • Gerfen CR, Surmeier DJ (2011) Modulation of striatal projection systems by dopamine. Annu Rev Neurosci 34:441–466

    Article  PubMed  CAS  Google Scholar 

  • Girault JA, Valjent E, Caboche J, Herve D (2007) ERK2: a logical AND gate critical for drug-induced plasticity? Curr Opin Pharmacol 7:77–85

    Article  PubMed  CAS  Google Scholar 

  • Goldman PS, Nauta WJ (1977) An intricately patterned prefronto-caudate projection in the rhesus monkey. J Comp Neurol 72:369–386

    Article  PubMed  CAS  Google Scholar 

  • Gong S, Zheng C, Doughty ML et al (2003) A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425:917–925

    Article  PubMed  CAS  Google Scholar 

  • Graybiel AM (2004) Network-level neuroplasticity in cortico-basal ganglia pathways. Parkinsonism Relat Disord 10:293–296

    Article  PubMed  Google Scholar 

  • Haber SN (2003) The primate basal ganglia: parallel and integrative networks. J Chem Neuroanat 26:317–330

    Article  PubMed  Google Scholar 

  • Haber SN, Calzavara R (2009) The cortico-basal ganglia integrative network: the role of the thalamus. Brain Res Bull 78:69–74

    Article  PubMed  Google Scholar 

  • Jiao H, Zhang L, Gao F, Lou D, Zhang J, Xu M (2007) Dopamine D(1) and D(3) receptors oppositely regulate NMDA- and cocaine-induced MAPK signaling via NMDA receptor phosphorylation. J Neurochem 103:840–848

    Article  PubMed  CAS  Google Scholar 

  • Kawaguchi Y, Wilson CJ, Augood SJ, Emson PC (1995) Striatal interneurones: chemical, physiological and morphological characterization. Trends Neurosci 18:527–535

    Article  PubMed  CAS  Google Scholar 

  • Kelleher RJ 3rd, Govindarajan A, Jung HY, Kang H, Tonegawa S (2004a) Translational control by MAPK signaling in long-term synaptic plasticity and memory. Cell 116:467–479

    Article  PubMed  CAS  Google Scholar 

  • Kelleher RJ 3rd, Govindarajan A, Tonegawa S (2004b) Translational regulatory mechanisms in persistent forms of synaptic plasticity. Neuron 44:59–73

    Article  PubMed  CAS  Google Scholar 

  • Kim DS, Palmiter RD, Cummins A, Gerfen CR (2006) Reversal of supersensitive striatal dopamine D1 receptor signaling and extracellular signal-regulated kinase activity in dopamine-deficient mice. Neuroscience 137:1381–1388

    Article  PubMed  CAS  Google Scholar 

  • Kramer PF, Christensen CH, Hazelwood LA, Dobi A, Bock R, Sibley DR, Mateo Y, Alvarez VA (2011) Dopamine D2 receptor overexpression alters behavior and physiology in Drd2-EGFP mice. J Neurosci 31:126–132

    Article  PubMed  CAS  Google Scholar 

  • Lanciego JL, Gonzalo N, Castle M, Sanchez-Escobar C, Aymerich MS, Obeso JA (2004) Thalamic innervation of striatal and subthalamic neurons projecting to the rat entopeduncular nucleaus. Eur J Neurosci 19:1267–1277

    Google Scholar 

  • Le Moine C, Tison F, Bloch B (1990) D2 dopamine receptor gene expression by cholinergic neurons in the rat striatum. Neurosci Lett 117:248–252

    Article  PubMed  Google Scholar 

  • Mahadevan LC, Willis AC, Barratt MJ (1991) Rapid histone H3 phosphorylation in response to growth factors, phorbol esters, okadaic acid, and protein synthesis inhibitors. Cell 65:775–783

    Article  PubMed  CAS  Google Scholar 

  • Malach R, Graybiel AM (1986) Mosaic architecture of the somatic sensory-recipient sector of the cat’s striatum. J Neurosci 6:3436–3458

    PubMed  CAS  Google Scholar 

  • Matamales M, Bertran-Gonzalez J, Salomon L, Degos B, Deniau JM, Valjent E, Hervé D, Girault JA (2009) Striatal medium-sized spiny neurons: identification by nuclear staining and study of neuronal subpopulations in BAc transgenic mice. pLoS One 4(3):e4770

    Google Scholar 

  • Mercuri NB, Saiardi A, Bonci A, Picetti R, Calabresi P, Bernardi G, Borrelli E (1997) Loss of autoreceptor function in dopaminergic neurons from dopamine D2 receptor deficient mice. Neuroscience 79:323–327

    Article  PubMed  CAS  Google Scholar 

  • Nicola SM (2007) The nucleus accumbens as part of a basal ganglia action selection circuit. Psychopharmacology (Berl) 191:521–550

    Article  CAS  Google Scholar 

  • Parent A, Bouchard C, Smith Y (1984) The striatopallidal and striatonigral projections: two distinct fiber systems in primate. Brain Res 303:385–390

    Article  PubMed  CAS  Google Scholar 

  • Pascoli V, Besnard A, Herve D, Pages C, Heck N, Girault JA, Caboche J, Vanhoutte P (2011) Cyclic adenosine monophosphate-independent tyrosine phosphorylation of NR2B mediates cocaine-induced extracellular signal-regulated kinase activation. Biol Psychiatry 69:218–227

    Article  PubMed  CAS  Google Scholar 

  • Pavon N, Martin AB, Mendialdua A, Moratalla R (2006) ERK phosphorylation and FosB expression are associated with l-DOPA-induced dyskinesia in hemiparkinsonian mice. Biol Psychiatry 59:64–74

    Article  PubMed  CAS  Google Scholar 

  • Penney JB Jr, Young AB (1983) Speculations on the functional anatomy of basal ganglia disorders. Annu Rev Neurosci 6:73–94

    Article  PubMed  Google Scholar 

  • Pisani A, Bonsi P, Centonze D, Calabresi P, Bernardi G (2000) Activation of D2-like dopamine receptors reduces synaptic inputs to striatal cholinergic interneurons. J Neurosci 20:RC69

    Google Scholar 

  • Ruvinsky I, Meyuhas O (2006) Ribosomal protein S6 phosphorylation: from protein synthesis to cell size. Trends Biochem Sci 31:342–348

    Article  PubMed  CAS  Google Scholar 

  • Salzmann J, Marie-Claire C, Le Guen S, Roques BP, Noble F (2003) Importance of ERK activation in behavioral and biochemical effects induced by MDMA in mice. Br J Pharmacol 140:831–838

    Article  PubMed  CAS  Google Scholar 

  • Santini E, Alcacer C, Cacciatore S, Heiman M, Herve D, Greengard P, Girault JA, Valjent E, Fisone G (2009) l-DOPA activates ERK signaling and phosphorylates histone H3 in the striatonigral medium spiny neurons of hemiparkinsonian mice. J Neurochem 108:621–633

    Article  PubMed  CAS  Google Scholar 

  • Schiffmann SN, Jacobs O, Vanderhaeghen JJ (1991) Striatal restricted adenosine A2 receptor (RDC8) is expressed by enkephalin but not by substance P neurons: an in situ hybridization histochemistry study. J Neurochem 57:1062–1067

    Article  PubMed  CAS  Google Scholar 

  • Shiflett MW, Balleine BW (2011) Contributions of ERK signaling in the striatum to instrumental learning and performance. Behav Brain Res 218:240–247

    Article  PubMed  CAS  Google Scholar 

  • Smith Y, Kieval JZ (2000) Anatomy of the dopamine system in the basal ganglia. Trends Neurosci 23:S28–S33

    Google Scholar 

  • Smith Y, Raju DV, Pare JF, Sidibe M (2004) The thalamostriatal system: a highly specific network of the basal ganglia circuitry. Trends Neurosci 27:520–527

    Article  PubMed  CAS  Google Scholar 

  • Surmeier DJ, Song WJ, Yan Z (1996) Coordinated expression of dopamine receptors in neostriatal medium spiny neurons. J Neurosci 16:6579–6591

    PubMed  CAS  Google Scholar 

  • Tepper JM, Bolam JP (2004) Functional diversity and specificity of neostriatal interneurons. Curr Opin Neurobiol 14:685–692

    Article  PubMed  CAS  Google Scholar 

  • Thomson S, Clayton AL, Hazzalin CA, Rose S, Barratt MJ, Mahadevan LC (1999) The nucleosomal response associated with immediate-early gene induction is mediated via alternative MAP kinase cascades: MSK1 as a potential histone H3/HMG-14 kinase. EMBO J 18:4779–4793

    Article  PubMed  CAS  Google Scholar 

  • Valjent E, Bertran-Gonzalez J, Aubier B, Greengard P, Herve D, Girault JA (2010) Mechanisms of locomotor sensitization to drugs of abuse in a two-injection protocol. Neuropsychopharmacology 35:401–415

    Article  PubMed  CAS  Google Scholar 

  • Valjent E, Bertran-Gonzalez J, Herve D, Fisone G, Girault JA (2009) Looking BAC at striatal signaling: cell-specific analysis in new transgenic mice. Trends Neurosci 32:538–547

    Article  PubMed  CAS  Google Scholar 

  • Valjent E, Corvol JC, Pages C, Besson MJ, Maldonado R, Caboche J (2000) Involvement of the extracellular signal-regulated kinase cascade for cocaine-rewarding properties. J Neurosci 20:8701–8709

    PubMed  CAS  Google Scholar 

  • Valjent E, Pages C, Herve D, Girault JA, Caboche J (2004) Addictive and non-addictive drugs induce distinct and specific patterns of ERK activation in mouse brain. Eur J Neurosci 19:1826–1836

    Article  PubMed  Google Scholar 

  • Valjent E, Pascoli V, Svenningsson P et al (2005) Regulation of a protein phosphatase cascade allows convergent dopamine and glutamate signals to activate ERK in the striatum. Proc Natl Acad Sci USA 102:491–496

    Google Scholar 

  • Westin JE, Vercammen L, Strome EM, Konradi C, Cenci MA (2007) Spatiotemporal pattern of striatal ERK1/2 phosphorylation in a rat model of l-DOPA-induced dyskinesia and the role of dopamine D1 receptors. Biol Psychiatry 62:800–810

    Article  PubMed  CAS  Google Scholar 

  • Willuhn I, Sun W, Steiner H (2003) Topography of cocaine-induced gene regulation in the rat striatum: relationship to cortical inputs and role of behavioural context. Eur J Neurosci 17:1053–1066

    Article  PubMed  Google Scholar 

  • Yan Z, Feng J, Fienberg AA, Greengard P (1999) D(2) dopamine receptors induce mitogen-activated protein kinase and cAMP response element-binding protein phosphorylation in neurons. Proc Natl Acad Sci USA 96:11607–11612

    Google Scholar 

  • Yano M, Steiner H (2005a) Methylphenidate (Ritalin) induces Homer 1a and zif 268 expression in specific corticostriatal circuits. Neuroscience 132:855–865

    Article  PubMed  CAS  Google Scholar 

  • Yano M, Steiner H (2005b) Topography of methylphenidate (ritalin)-induced gene regulation in the striatum: differential effects on c-fos, substance P and opioid peptides. Neuropsychopharmacology 30:901–915

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Inserm and grants from ATIP-Avenir (Inserm), Sanofi-Aventis R&D and from the Agence Nationale de la Recherche (ANR-2010-JCJC-1412) to Emmanuel Valjent. Giuseppe Gangarossa was supported by a Short-Term fellowship (Ambassade de France). We thank Dr Dimitri De Bundel for comments on the manuscript. We are grateful to Laurent Fagni (Institut de Génomique Fonctionnelle) for providing the transgenic mice used in this study. We thank Fredéric Gallardo and Florence Arnal for animal care, breeding and genotyping.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Valjent.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1 (DOCX 14 kb)

429_2012_405_MOESM2_ESM.tif

Supplemental Figure 1. Identification of EGFP-expressing striatal neurons in Drd2-EGFP mice. Parvalbumin immunoreactivity (cyan) was detected together with EGFP (green) and DARPP-32 (red) immunoreactivity in the dorsal striatum of Drd2-EGFP mice in a triple fluorescence analysis. Arrowheads (yellow) indicate the position of parvalbumin-positive GABAergic interneurons. Arrows (yellow) indicate the position of cholinergic interneurons, which can be detected in Drd2-EGFP mice (Bertran-Gonzalez et al. 2008; Matamales et al. 2009). Scale bar 30 µm (TIFF 716 kb)

429_2012_405_MOESM3_ESM.tif

Supplemental Figure 2. SKF81297 induces ERK activation in DARPP-32-expressing neurons. P-ERK immunoreactivity (red) was detected together with DARPP-32 (blue) and EGFP (green) immunoreactivity in the striatal sector receiving afferents from the cingulate cortex of Drd2-EGFP mice treated with vehicle or SKF81297 (5 mg/kg) in a triple fluorescence analysis. Arrowheads (yellow) illustrate P-ERK/DARPP-32-positive cells and the complete lack of co-localization with EGFP-expressing neurons revealing that SKF81297-induced ERK activation is restricted in D1R-containing MSNs. Scale bar: 50 µm (TIFF 893 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gangarossa, G., Perroy, J. & Valjent, E. Combinatorial topography and cell-type specific regulation of the ERK pathway by dopaminergic agonists in the mouse striatum. Brain Struct Funct 218, 405–419 (2013). https://doi.org/10.1007/s00429-012-0405-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-012-0405-6

Keywords

Navigation