Skip to main content

Advertisement

Log in

Enhancement of effects of irradiation by gemcitabine in a glioblastoma cell line and cell line spheroids

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Background and purpose

To determine the cytotoxicity of, and radioenhancement by, gemcitabine on a glioma cell line grown as a monolayer and as spheroid cultures.

Material and methods

We used a human glioma cell line, Gli-6, which originated from a biopsy specimen of a patient with a glioblastoma multiforme. Spheroids of Gli-6 were prepared by seeding a single cell suspension on agarose-coated Petri dishes. Clonogenic and growth delay assays were used to determine radio-chemosensitivity of monolayer cultures. The growth delay assay was used to determine that of Gli-6 spheroid cultures.

Results

Spheroid cultures were found to be more resistant to irradiation with/or without gemcitabine than monolayer cultures. Whereas gemcitabine significantly enhances the radiation effect of exponentially growing Gli-6 monolayer cultures at minimal cytotoxic concentrations (10 nM, 24 h), no enhancement was seen in confluent monolayer cultures and in large spheroids at the same concentration. In small spheroids no enhancement was observed at a low-dose gemcitabine (10 nM for 24 h), but an enhancement was observed at higher concentrations (100 nM for 24 h).

Conclusion

Gemcitabine can lead to enhancement of the effects of X-irradiation in both monolayer as spheroid glioblastoma cultures. The lack of enhancement in confluent monolayer cultures supports the view that cell cycle distribution of cells is important in radiosensitisation by gemcitabine

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1A–D
Fig. 2A–C
Fig. 3A–D

Similar content being viewed by others

References

  • Arning M, Blatter J (1997) Gemcitabine in solid tumors-present status and further development. Oncologie 29:297–304

    Google Scholar 

  • Barendsen GW (1982) Radiobiology of neutrons. Int J Radiat Oncol Biol Phys 8:2103–2107

    CAS  PubMed  Google Scholar 

  • Barendsen GW, Van Bree C, Franken NA (2001) Importance of cell proliferative state and potentially lethal damage repair on radiation effectiveness: implications for combined tumor treatments. Int J Oncol 19:247–256

    CAS  PubMed  Google Scholar 

  • Biaglow JE, Varnes ME, Jacobson B, Koch CJ (1983) Factors influencing the oxygen consumption and radiation response of cultured mammalian cells. Adv Exp Med Biol 159:347–358

    CAS  PubMed  Google Scholar 

  • Bjerkvig R, Tonnesen A, Laerum OD, Backlund EO (1990) Multicellular tumor spheroids from human gliomas maintained in organ culture. J Neurosurg 72:463–475

    CAS  PubMed  Google Scholar 

  • Buffa FM, West C, Byrne K, Moore JV, Nahum AE (2001) Radiation response and cure rate of human colon adenocarcinoma spheroids of different size: the significance of hypoxia on tumor control modelling. Int J Radiat Oncol Biol Phys 49:1109–1118

    Article  CAS  PubMed  Google Scholar 

  • Carlsson J, Nilsson K, Westermark B, Ponten J, Sundstrom C, Larsson E, Bergh J, Pahlman S, Busch C, Collins VP (1983) Formation and growth of multicellular spheroids of human origin. Int J Cancer 31:523–533

    CAS  PubMed  Google Scholar 

  • Carlsson J, Yuhas JM (1984) Liquid-overlay culture of cellular spheroids. In: Acker H, Carlsson J, Durand R, Sutherland RM (eds) Recent results in cancer research. Spheroids in cancer research. Springer, Berlin, pp 1–23

  • Dertinger H, Hulser D (1981) Increased radioresistance of cells in cultured multicell spheroids. I. Dependence on cellular interaction. Radiat Environ Biophys 19:101–107

    CAS  PubMed  Google Scholar 

  • Desoize B, Gimonet D, Jardiller JC (1998) Cell culture as spheroids: an approach to multicellular resistance. Anticancer Res 18:4147–4158

    CAS  PubMed  Google Scholar 

  • Durand RE, Biaglow JE (1977) Radiosensitization of hypoxic cells of an in vitro tumor model by respiratory inhibitors. Radiat Res 69:359–366

    CAS  PubMed  Google Scholar 

  • Fehlauer F, Barten-Van Rijbroek AD, Stalpers LJ, Leenstra S, Lindeman J, Tjahja I, Troost D, Wolbers JG, van der Valk P, Sminia P (2000) Additive cytotoxic effect of cisplatin and X-irradiation on human glioma cell cultures derived from biopsy-tissue. J Cancer Res Clin Oncol 126:711–716

    CAS  PubMed  Google Scholar 

  • Gertler SZ, MacDonald D, Goodyear M, Forsyth P, Stewart DJ, Belanger K, Perry J, Fulton D, Steward W, Wainman N, Seymour L (2000) NCIC-CTG phase II study of gemcitabine in patients with malignant glioma (IND.94). Ann Oncol 11:315–318

    Article  CAS  PubMed  Google Scholar 

  • Gonzàlez Gonzàlez D, Hulshof MCCM (1993) Radiotherapy. In: Twijnstra A, Keyser A, Ongerboer de Visser BW (eds) Neuro-oncology. Primary tumors and neurological complications of cancer. Elsevier, Amsterdam, pp 134–158

  • Gorlach A, Acker H (1994) pO2- and pH-gradients in multicellular spheroids and their relationship to cellular metabolism and radiation sensitivity of malignant human tumor cells. Biochim Biophys Acta 1227:105–112

    CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    CAS  PubMed  Google Scholar 

  • Hulshof MC, Koot RW, Schimmel EC, Dekker F, Bosch DA, Gonzalez Gonzalez D (2001) Prognostic factors in glioblastoma multiforme. 10 years experience of a single institution. Strahlenther Onkol 177:283–290

    CAS  PubMed  Google Scholar 

  • Kaaijk P, Troost D, Das PK, Leenstra S, Bosch DA (1995) Long-term culture of organotypic multicellular glioma spheroids: a good culture model for studying gliomas. Neuropathol Appl Neurobiol 21:386

    CAS  PubMed  Google Scholar 

  • Kaaijk P, Troost D, Sminia P, Hulshof MC, van der Kracht AH, Leenstra S, Bosch DA (1997) Hypofractionated radiation induces a decrease in cell proliferation but no histological damage to organotypic multicellular spheroids of human glioblastomas. Eur J Cancer 33:645–651

    Article  CAS  PubMed  Google Scholar 

  • Kunz-Schughart LA (1999) Multicellular tumor spheroids: intermediates between monolayer culture and in vivotumor. Cell Biol Int 23:157–161

    Article  CAS  PubMed  Google Scholar 

  • Latz D, Fleckenstein K, Eble M, Blatter J, Wannenmacher M, Weber KJ (1998) Radiosensitizing potential of gemcitabine (2’,2’-difluoro-2’-deoxycytidine) within the cell cycle in vitro. Int J Radiat Oncol Biol Phys 41:875–882

    Article  CAS  PubMed  Google Scholar 

  • Lawrence TS, Eisbruch A, Shewach DS (1997) Gemcitabine-mediated radiosensitization. Sem Oncol 24:24−28

    CAS  Google Scholar 

  • Mason KA, Milas L, Hunter NR et al. (1999) Maximizing therapeutic gain with gemcitabine and fractionated radiation. Int J Radiat Oncol Biol Phys 44:1125–1135

    Article  CAS  PubMed  Google Scholar 

  • Neshasteh-Riz A, Angerson WJ, Reeves JR, Smith G, Rampling R, Mairs RJ (1997) Incorporation of iododeoxyuridine in multicellular glioma spheroids: implications for DNA-targeted radiotherapy using Auger electron emitters. Br J Cancer 75:493–499

    CAS  PubMed  Google Scholar 

  • Nirmala C, Rao JS, Ruifrok AC, Langford LA, Obeyesekere M. (2001) Growth characteristics of glioblastoma spheroids. Int J Oncol 19:1109–1115

    CAS  PubMed  Google Scholar 

  • Olive PL, Durand RE (1994) Drug and radiation resistance in spheroids: cell contact and kinetics. Cancer Metastasis Rev 13:121–138

    CAS  PubMed  Google Scholar 

  • Ostruszka LJ, Shewach DS (2000) The role of cell cycle progression in radiosensitization by 2’,2’-difluoro-2’-deoxycytidine. Cancer Res 60:6080–6088

    CAS  PubMed  Google Scholar 

  • Plunkett W, Huang P, Gandhi V (1995) Preclinical characteristics of gemcitabine. Anti-Cancer Drugs 6:7–13

    Google Scholar 

  • Prados MD, Wilson CB (1997) Neoplasms of the central nervous system. In: I. Williams & Wilkins (eds) Cancer medicine. Baltimore, pp 1471–1514

  • Ramsay J, Ward R, Bleehen NM (1992) Radiosensitivity testing of human malignant gliomas. Int J Radiat Oncol Biol Phys 24:675–680

    CAS  PubMed  Google Scholar 

  • Rieger J, Durka S, Streffer J, Dichgans J, Weller M (1999) Gemcitabine cytotoxicity of human malignant glioma cells: modulation by antioxidants, BCL-2 and dexamethasone. Eur J Pharmacol 365:301–308

    Article  CAS  PubMed  Google Scholar 

  • Santini MT, Rainaldi G, Indovina PL (1999) Multicellular tumour spheroids in radiation biology. Int J Radiat Biol 1999 75:787–799

    Article  CAS  Google Scholar 

  • Sminia P, Acker H, Eikesdal HP, Kaaijk P, Enger P, Slotman B, Bjerkvig R (2003) Oxygenation and response to irradiation of organotypic multicellular spheroids of human glioma. Anticancer Res 23:1461–1466

    PubMed  Google Scholar 

  • Smitskamp-Wilms E, Pinedo HM, Veerman G, Ruiz van Haperen VWT, Peters GJ (1998) Postconfluent multilayered cell line cultures for selective screening of gemcitabine. Eur J Cancer 34:921–926

    Article  CAS  PubMed  Google Scholar 

  • Sutherland RM & Durand RE (1973) Hypoxic cells in an in vitro tumour model. Int J Radiat Biol Relat Stud Phys Chem Med 23:235–246

    CAS  PubMed  Google Scholar 

  • Sutherland RM (1988) Cell and environment interactions in tumor microregions: the multicell spheroid model. Science 240:177–184

    CAS  PubMed  Google Scholar 

  • Sutherland RM (1998) Tumor hypoxia and gene expression--implications for malignant progression and therapy. Acta Oncol 37:567–574

    Article  CAS  PubMed  Google Scholar 

  • Taghian A, Ramsay J, Allalunis-Turner J (1993) Intrinsic radiation sensitivity may not be the major determinant of the poor clinical outcome of glioblastoma multiforme. Int J Radiat Oncol Biol Phys 25:243–249

    CAS  PubMed  Google Scholar 

  • Van Bree C, Castro Kreder N, Loves WJ, Franken NA, Peters GJ, Haveman J (2002) Sensitivity to ionizing radiation and chemotherapeutic agents in gemcitabine-resistant human tumor cell lines. Int J Radiat Oncol Biol Phys 54:237–244

    PubMed  Google Scholar 

  • Weller M, Streffer J, Wick W. et al (2001) Preirradiation gemcitabine chemotherapy for newly diagnosed glioblastoma. Cancer 91:423–427

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaap Haveman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Genç, M., Castro Kreder, N., Barten-van Rijbroek, A. et al. Enhancement of effects of irradiation by gemcitabine in a glioblastoma cell line and cell line spheroids. J Cancer Res Clin Oncol 130, 45–51 (2004). https://doi.org/10.1007/s00432-003-0506-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-003-0506-y

Keywords

Navigation