Skip to main content
Log in

The effect of continuously applied cyclic mechanical loading on the fibronectin metabolism of articular cartilage explants

  • Published:
Research in Experimental Medicine

Abstract

Articular cartilage serves primarily as a load-bearing material able to regulate its own metabolic activity in response to the mechanical stimuli applied. Fibronectin plays a critical role in the organization and function of the cartilage extracellular matrix. The purpose of this study was to investigate systematically the effect of load magnitude, frequency and duration of loading on the synthesis, content and release of fibronectin and proteins by mature bovine articular cartilage explants using a novel mechanical loading system. Increasing the load magnitude, as well as the duration of loading, inhibited the synthesis and content of fibronectin and proteins; the fibronectin synthesis was more specifically affected than the overall protein synthesis indicating that fibronectin is more responsive to pressure than synthesis of other proteins. Reducing the load frequency did not modulate the inhibitory effect of a given cyclic stress on synthesis and content of fibronectin and proteins even though explants were more compressed. The release of endogenous fibronectin was significantly reduced independent of the applied loading protocols when compared with unloaded controls. This study demonstrates that the magnitude and the duration of loading influences the degree of inhibition of fibronectin and protein synthesis, while loaded explants possess an elevated but limited capacity to bind fibronectin. Compared with other studies, our present results show that the applied load function in particular has a profound effect on the metabolism of chondrocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brand HS, Kampen GPJ van, Stadt RJ van der, Kuijer R, Korst JK van der (1989) Effect of sulfate concentration on glycosaminoglycan synthesis in explant cultures of bovine articular cartilage. Cell Biol Int Rep 13: 153–162

    Article  CAS  PubMed  Google Scholar 

  2. Brandt KD, Wurster NB, Lust G (1986) Fibronectin in degenerating cartilage: relationship to chondrocyte cloning. Trans 32nd Annu Meet Orthop Res Soc 11: 255

    Google Scholar 

  3. Brown RA, Jones KL (1992) Fibronectin synthesis and release of fibronectin in normal and osteoarthritic human articular cartilage. Eur J Exp Musculoskel Res 1: 25–32

    CAS  Google Scholar 

  4. Burton-Wurster N, Lust G (1985) Deposition of fibronectin in articular cartilage in canine osteoarthritic joints. Am J Vet Res 46: 2542–2545

    CAS  PubMed  Google Scholar 

  5. Burton-Wurster N, Lust G (1989) Fibronectin in cartilage. In: Carson SE (ed) Fibronectin in health and disease. CRC-Press, Boca Raton, pp 243–254

    Google Scholar 

  6. Burton-Wurster N, Lust G (1990) Fibronectin and proteoglycan synthesis in long term cultures of cartilage explants in Ham’s F-12 supplemented with insulin and calcium: effects of the addition of TGF-β. Arch Biochem Biophys 283: 27–33

    Article  CAS  PubMed  Google Scholar 

  7. Burton-Wurster N, Butler MC, Harter SJ, Colombo C, Quintavalla J, Swartzendruber D, Arsenis C, Lust G (1986) Presence of fibronectin in the articular cartilage in two animal models of osteoarthritis. J Rheumatol 13: 175–182

    CAS  PubMed  Google Scholar 

  8. Burton-Wurster N, Vernier-Singer M, Farquhar T, Lust G (1993) Effect of compressive loading and unloading on the synthesis of total protein, proteoglycan, and fibronectin by canine cartilage explants. J Orthop Res 11: 717–729

    Article  CAS  PubMed  Google Scholar 

  9. Burton-Wurster N, Lust G, MacLeod JN (1997) Cartilage fibronectin isoforms: in search of functions for a special population of matrix glycoproteins. Matrix Biol 15: 441–454

    Article  CAS  PubMed  Google Scholar 

  10. Chevalier X, Groult N, Labat-Robert J (1992) Biosynthesis and distribution of fibronectin in normal and osteoarthritic human cartilage. Clin Physiol Biochem 9: 1–6

    CAS  PubMed  Google Scholar 

  11. Farquhar T, Xia Y, Mann K, Bertram J, Burton-Wurster N, Jelinski L, Lust G (1996) Swelling and fibronectin accumulation in articular cartilage explants after cyclical impact. J Orthop Res 14: 417–423

    Article  CAS  PubMed  Google Scholar 

  12. Finlay JP, Repo RU (1978) Instrumentation and procedure for the controlled impact of articular cartilage. IEEE Trans Biomed Eng 25: 34–39

    Article  CAS  PubMed  Google Scholar 

  13. Heinegard D, Lorenzo P, Sommarin Y (1995) Articular cartilage matrix proteins. In: Kuettner KE, Goldberg VM (eds) Osteoarthritic disorders. American Academy of Orthopaedic Surgeons, Rosemont, pp 229–237

    Google Scholar 

  14. Helminen HJ, Kiviranta I, Saamanen AM, Jurvelin JS, Arokoski, J, Oettmeier R, Abendroth K, Roth AJ, Tammi M (1992) Effect of motion and load on articular cartilage in animal models. In: Kuettner KE, Schleyerbach R, Peyron JC, Hascall VC (eds) Articular cartilage and osteoarthritis. Raven Press, New York, pp 501–510

    Google Scholar 

  15. Jones KL, Brown M, Ali SY, Brown RA (1987) An immunohistochemical study of fibronectin in human osteoarthritic and disease-free articular cartilage. Ann Rheum Dis 46: 809–815

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Kim YJ, Sah RLY, Grodzinsky AJ, Plaas AHK, Sandy JD (1994) Mechanical regulation of cartilage biosynthetic behavior: physical stimuli. Arch Biochem Biophys 311: 1–12

    Article  CAS  PubMed  Google Scholar 

  17. Kim YJ, Grodzinsky AJ, Plaas AHK (1996) Compression of cartilage results in differential effects on biosynthetic pathways for aggrecan, link protein, and hyaluronan. Arch Biochem Biophys 328: 331–340

    Article  CAS  PubMed  Google Scholar 

  18. Lust G, Burton-Wurster N, Leipold H (1987) Fibronectin as a marker for osteoarthritis. J Rheumatol 14[Suppl 14]: 28–29

    CAS  PubMed  Google Scholar 

  19. Miller RR, Mankin HJ, Shoji H, D’Ambrosia RD (1984) Identification of fibronectin in preparations of osteoarthritic human cartilage. Connect Tissue Res 12: 267–275

    Article  CAS  PubMed  Google Scholar 

  20. Mow VC, Setton LA, Guilak F and Ratcliffe A (1995) Mechanical factors in articular cartilage and their role in osteoarthritis. In: Kuettner KE, Goldberg VM (eds) Osteoarthritic disorders. American Academy of Orthopaedic Surgeons, Rosemont, pp 147–171

    Google Scholar 

  21. Mohtai M, Gupta MK, Donlon B, Ellison B, Cooke J, Gibbons G, Schurman DJ, Smith RL (1996) Expression of interleukin-6 in osteoarthritic chondrocytes and effects of fluid-induced shear on this expression in normal human chondrocytes in vitro. J Orthop Res 14: 67–73

    Article  CAS  PubMed  Google Scholar 

  22. Ostendorf RH, Koning MHMT de, Stadt RJ van de, Kampen GPJ van (1995) Cyclic loading is harmful to articular cartilage from which proteoglycans have been partially depleted by retinoic acid. Osteoarthritis Cartilage 3: 275–284

    Article  CAS  PubMed  Google Scholar 

  23. Pena SDJ, Mills G, Hughes RC, Aptin JD (1980) Polypeptide heterogeneity of hamster and calf fibronectins. Biochem J 189: 337–347

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Rees JA, Ali SY, Brown RA (1987) Ultrastructural localization of fibronectin in human osteoarthritic articular cartilage. Ann Rheum Dis 46: 816–822

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Ruoslahti E, Hyman EG, Pirschbacher M, Engvall E (1982) Fibronectin: purification, immunochemical properties, and biological activities. In: Cunningham LW, Frederiksen DW (eds) Methods in enzymology, vol. 82. Academic Press, New York, pp 803–831

    Google Scholar 

  26. Sah RL-Y, Grodzinsky A-J, Plaas AHK, Sandy JD (1992) Effect of static and dynamic compression on matrix metabolism in cartilage explants. In: Kuettner KE, Schleyerbach R, Peyron JC, Hascall VC (eds) Articular cartilage and osteoarthritis. Raven Press, New York, pp 373–392

    Google Scholar 

  27. Simon WH (1970) Scale effects in animal joints. I. Articular cartilage thickness and compressive stress. Arthritis Rheum 13: 244–256

    Article  CAS  PubMed  Google Scholar 

  28. Smith RL, Donlon BS, Gupta MK, Mohtai M, Das P, Carter DR, Cooke J, Gibbons G, Hutchinson N, Schurman DJ (1995) Effects of fluid-induced shear on articular chondrocyte morphology and metabolism in vitro. J Orthop Res 13: 824–831

    Article  CAS  PubMed  Google Scholar 

  29. Smith RL, Rusk SF, Ellison BE, Wessells P, Tsuchiya K, Carter DR, Caler WE, Sandell LJ, Schurman DJ (1996) In vitro stimulation of articular chondrocyte mRNA and extracellular matrix synthesis by hydrostatic pressure. J Orthop Res 14: 53–60

    Article  CAS  PubMed  Google Scholar 

  30. Steinmeyer J (1997) A computer-controlled mechanical culture system for biological testing of articular cartilage explants. J Biomech 30: 841–845

    Article  CAS  PubMed  Google Scholar 

  31. Steinmeyer J, Knue S (1997) The proteoglycan metabolism of mature bovine articular cartilage explants superimposed to continuously applied cyclic mechanical loading. Biochem Biophys Res Commun 240: 216–221

    Article  CAS  PubMed  Google Scholar 

  32. Steinmeyer J, Torzilli PA, Burton-Wurster N, Lust G (1993) A new pressure chamber to study the biosynthetic response of articular cartilage to mechanical loading. Res Exp Med 193: 137–142

    Article  CAS  Google Scholar 

  33. Steinmeyer J, Ackermann B, Raiss RX (1997) Intermittent cyclic loading of cartilage explants modulates the fibronectin metabolism. Osteoarthritis Cartilage 5: 331–341

    Article  CAS  PubMed  Google Scholar 

  34. Urban JPG (1994) The chondrocyte: a cell under pressure. Br J Rheumatol 33: 901–908

    Article  CAS  PubMed  Google Scholar 

  35. Wurster NB, Lust G (1982) Fibronectin in canine osteoarthritic articular cartilage. Biochem Biophys Res Commun 109: 1094–1101

    Article  CAS  PubMed  Google Scholar 

  36. Wurster NB, Lust G (1984) Synthesis of fibronectin in normal and osteoarthritic articular cartilage. Biochim Biophys Acta 800: 52–58

    Article  CAS  PubMed  Google Scholar 

  37. Zhang D, Burton-Wurster N, Lust G (1995) Antibody specific for extra domain B of fibronectin demonstrates elevated levels of both extra domain B(+) and B(−) fibronectin in osteoarthritic canine cartilage. Matrix Biol 14: 623–633

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steinmeyer, J., Ackermann, B. The effect of continuously applied cyclic mechanical loading on the fibronectin metabolism of articular cartilage explants. Research in Experimental Medicine 198, 247–260 (1999). https://doi.org/10.1007/s004330050108

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s004330050108

Key words

Navigation