Skip to main content
Log in

Immune response induced by New World Leishmania species in C57BL/6 mice

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

In the present study, C57BL/6 mice were inoculated with metacyclic Leishmania amazonensis or L. braziliensis promastigotes. While these animals were capable of controlling the infection by L. braziliensis, they developed chronic lesions with elevated numbers of parasites when infected by L. amazonensis. The differences in parasite control were associated with a decreased production of IFN-γ and TNF by lymph node cells from L. amazonensis-infected mice. Furthermore, these animals presented decreased spleen cell proliferation and activation of germinal centers. In addition, we compared the ability of these parasites to hydrolyze extracellular ATP and AMP. While the ATPase activity of both parasite species was similar, L. amazonensis promastigotes presented higher AMP hydrolytic activity. This increased activity may lead to an increased production of adenosine, which has been shown to present anti-inflammatory activity and may thus be involved in the establishment of the immunosuppression observed in mice infected by L. amazonensis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1a,b
Fig. 2a,b
Fig. 3a,b
Fig. 4a–d
Fig. 5

Similar content being viewed by others

References

  • Afonso LCC, Scott P (1993) Immune responses associated with susceptibility of C57BL/10 mice to Leishmania amazonensis. Infect Immun 61:2952–2959

    CAS  PubMed  Google Scholar 

  • Berredo-Pinho M, Peres-Sampaio CE, Chrispim PP, Belmont-Firpo R, Lemos AP, Martiny A, Vannier-Santos MA, Meyer-Fernandes JR (2001) A Mg-dependent ecto-ATPase in Leishmania amazonensis and its possible role in adenosine acquisition and virulence. Arch Biochem Biophys 391:16–24

    Article  CAS  PubMed  Google Scholar 

  • Carvalho EM, Correia FD, Bacellar O, Almeida RP, Lessa H, Rocha H (1995) Characterization of the immune response in subjects with self-healing cutaneous leishmaniasis. Am J Trop Med Hyg 53:273–277

    CAS  PubMed  Google Scholar 

  • Childs GE, Lightner LK, McKinney L, Groves MG, Price EE, Hendricks LD (1984) Inbred mice as model hosts for cutaneous leishmaniasis. I. Resistance and susceptibility to infection with Leishmania braziliensis, L. mexicana, and L. aethiopica. Ann Trop Med Parasitol 78:25–34

    CAS  PubMed  Google Scholar 

  • Coimbra ES, Gonçalves-da-Costa SC, Corte-Real S, De Freitas FG, Durão AC, Souza CS, Silva-Santos MI, Vasconcelos EG (2002) Characterization and cytochemical localization of an ATP diphosphohydrolase from Leishmania amazonensis promastigotes. Parasitology 124:137–143

    Article  CAS  PubMed  Google Scholar 

  • Convit J, Pinardi ME, Rondón AJ (1972) Diffuse cutaneous leishmaniasis: a disease due to an immunological defect in the host. Trans R Soc Trop Med Hyg 66:603–610

    Article  CAS  PubMed  Google Scholar 

  • Coutinho SG, Cruz AM da, Bertho AL, Santiago MA, De-Luca P (1998) Immunologic patterns associated with cure in human American cutaneous leishmaniasis. Braz J Med Biol Res 31:139–142

    CAS  PubMed  Google Scholar 

  • da Cruz AM, Machado ES, Menezes JA, Rutowitsch MS, Coutinho SG (1992) Cellular and humoral immune responses of a patient with American cutaneous leishmaniasis and AIDS. Trans R Soc Trop Med Hyg 86:511–512

    Article  PubMed  Google Scholar 

  • DeKrey GK, Lima HC, Titus RG (1998) Analysis of the immune responses of mice to infection with Leishmania braziliensis. Infect Immun 66:827–829

    CAS  PubMed  Google Scholar 

  • Fietto JL, DeMarco R, Nascimento IP, Castro IM, Carvalho TM, De Souza W, Bahia MT, Alves MJ, Verjovski-Almeida S (2004) Characterization and immunolocalization of an NTP diphosphohydrolase of Trypanosoma cruzi. Biochem Biophys Res Commun 316:454–460

    Google Scholar 

  • Goding JW, Howard MC (1998) Ecto-enzymes of lymphoid cells. Immunol Rev 161:5–10

    CAS  Google Scholar 

  • Heinzel FP, Sadick MD, Holaday BJ, Coffman RL, Locksley RM (1989) Reciprocal expression of interferon gamma or IL4 during the resolution or progression of murine leishmaniasis. Evidence for expansion of distinct helper T cell subsets. J Exp Med 169:59–72

    Article  CAS  PubMed  Google Scholar 

  • Ji J, Sun J, Soong L (2003) Impaired expression of inflammatory cytokines and chemokines at early stages of infection with Leishmania amazonensis. Infect Immun 71:4278–4288

    Article  CAS  PubMed  Google Scholar 

  • La Sala A, Ferrari D, Di Virgilio F, Idzko M, Norgauer J, Girolomoni G (2003) Alerting and tuning the immune response by extracellular nucleotides. J Leukoc Biol 73:339–343

    Article  PubMed  Google Scholar 

  • Lattime SC, Stopacciaro A, Stutman O (1988) Limiting dilution analysis of TNF producing cells in C3H/HeJ mice. J Immunol 141:3422–3428

    CAS  PubMed  Google Scholar 

  • Lima HC, Titus RG (1996) Effects of sand fly vector saliva on development of cutaneous lesions and the immune response to Leishmania braziliensis in BALB/c mice. Infect Immun 64:5442–5445

    CAS  PubMed  Google Scholar 

  • Lima HC, DeKrey GK, Titus RG (1999) Resolution of an infection with Leishmania braziliensis confers complete protection to a subsequent challenge with Leishmania major in BALB/c mice. Mem Inst Oswaldo Cruz 94:71–76

    CAS  Google Scholar 

  • Locksley RM, Heinzel FP, Sadick MD, Holaday BJ, Gardner KD Jr (1987) Murine cutaneous leishmaniasis: susceptibility correlates with differential expansion of helper T-cells subsets. Ann Inst Pasteur Paris 138:744–749

    CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Marcus AJ, Broekman MJ, Drosopoulos JH, Islam N, Pinsky DJ, Sesti C, Levi R (2003) Metabolic control of excessive extracellular nucleotide accumulation by CD39/ecto-nucleotidase-1: implications for ischemic vascular diseases. J Pharmacol Exp Ther 305:9–16

    Article  CAS  PubMed  Google Scholar 

  • Mattner F, Magram J, Ferrante J, Launois P, Di Padova K, Behin R, Gately MK, Louis JA, Alber G (1996) Genetically resistant mice lacking interleukin-12 are susceptible to infection with Leishmania major and mount a polarized Th2 cell response. Eur J Immunol 26:1553–1559

    CAS  PubMed  Google Scholar 

  • Mattner F, Di Padova K, Alber G (1997) Interleukin-12 is indispensable for protective immunity against Leishmania major. Infect Immun 65:4378–4383

    CAS  PubMed  Google Scholar 

  • Mizumoto N, Kumamoto T, Robson SC, Sevigny J, Matsue H, Enjyoji K, Takashima A (2002) CD39 is the dominant Langerhans cell-associated ecto-NTPDase: modulatory roles in inflammation and immune responsiveness. Nat Med 8:358–365

    Article  CAS  PubMed  Google Scholar 

  • Moll H, Röllinghoff M (1990) Resistance to murine cutaneous leishmaniasis is mediated by TH1 cells, but disease-promoting CD4+ cells are different from TH2 cells. Eur J Immunol 20:2067-2074

    CAS  PubMed  Google Scholar 

  • Sacks D, Noben-Trauth N (2002) The immunology of susceptibility and resistance to Leishmania major in mice. Nat Rev Immunol 2:845–858

    Article  CAS  PubMed  Google Scholar 

  • Sartori A, Oliveira MA, Scott P, Trinchieri G (1997) Metacyclogenesis modulates the ability of Leishmania promastigotes to induce IL-12 production in human mononuclear cells. J Immunol 159:2849–2857

    CAS  PubMed  Google Scholar 

  • Scharton-Kersten T, Scott P (1995) The role of the innate immune response in Th1 cell development following Leishmania major infection. J Leukoc Biol 57:515–522

    CAS  PubMed  Google Scholar 

  • Scott P (1989) The role of TH1 and TH2 cells in experimental cutaneous leishmaniasis. Exp Parasitol 68:369–372

    Article  CAS  PubMed  Google Scholar 

  • Scott P (1991) IFN-γ modulates the early development of Th1 and Th2 responses in a murine model of cutaneous leishmaniasis. J Immunol 147:3149–3155

    CAS  PubMed  Google Scholar 

  • Soong L, Xu J-C, Grewal IS, P. K, Sun J, McMahon-Pratt D, Flavell RA (1996) Disruption of CD40-CD40 ligand interactions results in enhanced susceptibility to Leishmania amazonensis infection. Immunity 4:263–273

    Article  CAS  PubMed  Google Scholar 

  • Späth GF, Beverley SM (2001) A lipophosphoglycan-independent method for isolation of infective Leishmania metacyclic promastigotes by density gradient centrifugation. Exp Parasitol 99:97–103

    Article  PubMed  Google Scholar 

  • Taussky HH, Shorr E (1953) A microcolorimetric method for the determination of inorganic phosphorus. J Biol Chem 202:675–685

    PubMed  Google Scholar 

  • Toledo V, Mayrink W, Gollob K, Oliveira M, Costa C, Genaro O, Pinto J, Afonso L (2001) Immunochemotherapy in American cutaneous leishmaniasis: immunological aspects before and after treatment. Mem Inst Oswaldo Cruz 96:89–98

    CAS  Google Scholar 

  • Wilhelm P, Ritter U, Labbow S, Donhauser N, Rollinghoff M, Bogdan C, Korner H (2001) Rapidly fatal leishmaniasis in resistant C57BL/6 mice lacking TNF. J Immunol 166:4012–4019

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study received financial support from CAPES and was performed in accordance with Brazilian law.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luís Carlos Crocco Afonso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maioli, T.U., Takane, E., Arantes, R.M.E. et al. Immune response induced by New World Leishmania species in C57BL/6 mice. Parasitol Res 94, 207–212 (2004). https://doi.org/10.1007/s00436-004-1193-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-004-1193-6

Keywords

Navigation