Skip to main content
Log in

Multiple origins of parasitism in lice: phylogenetic analysis of SSU rDNA indicates that the Phthiraptera and Psocoptera are not monophyletic

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The Paraneoptera (Hemipteroid Assemblage) comprises the orders Thysanoptera (thrips), Hemiptera (bugs), Phthiraptera (lice) and Psocoptera (booklice and barklice). The phylogenetic relationships among the Psocodea (Phthiraptera and Psocoptera), Thysanoptera and Hemiptera are unresolved, as are some relationships within the Psocodea. Here, we present phylogenetic hypotheses inferred from SSU rDNA sequences; the most controversial of which is the apparent paraphyly of the Phthiraptera, which are parasites of birds and mammals, with respect to one family of Psocoptera, the Liposcelididae. The order Psocoptera and the suborder that contains the Liposcelididae, the Troctomorpha, are also paraphyletic. The two remaining psocopteran suborders, the Psocomorpha and the Trogiomorpha, are apparently monophyletic. The Liposcelididae is most closely related to lice from the suborder Amblycera. These results suggest that the taxonomy of the Psocodea needs revision. In addition, there are implications for the evolution of parasitism in insects; parasitism may have evolved twice in lice or have evolved once and been subsequently lost in the Liposcelididae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Barker SC, Whiting M, Johnson KP, Murrell A (2003) Phylogeny of the lice (Insecta: Phthiraptera) inferred from small subunit rRNA. Zool Scripta 32:407–414

    Google Scholar 

  • Black WC, Klompen JS, Keirans JE (1997) Phylogenetic relationships among tick subfamilies (Ixodida: Ixodidae: Argasidae) based on the 18 S nuclear rDNA gene. Mol Phylogenet Evol 7:129–144

    PubMed  Google Scholar 

  • Bremer K (1988) The limits of amino acid sequence data in angiosperm phylogenetic reconstruction. Evolution 42:795–803

    Google Scholar 

  • Bremer K (1994) Branch support and tree stability. Cladistics 10:295–304

    Article  Google Scholar 

  • Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552

    PubMed  Google Scholar 

  • Clay T (1970) The Amblycera (Phthiraptera: Insecta). Bull Br Museum (Nat Hist) Entomol 25:73–98

    Google Scholar 

  • Crampton A, McKay I, Barker SC (1996) Phylogeny of ticks (Ixodida) inferred from nuclear ribosomal DNA. Int J Parasitol 26:511–517

    PubMed  Google Scholar 

  • Cruickshank RH, Johnson KP, Smith VS, Adams RJ, Clayton DH, Page RDM (2001) Phylogenetic analysis of partial sequences of elongation factor 1 alpha identifies major groups of lice (Insecta: Phthiraptera). Mol Phylogenet Evol 19:202–215

    PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Google Scholar 

  • Huelsenbeck JP, Ronquist FR (2001) MRBAYES: bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    PubMed  Google Scholar 

  • Johnson KP, Mockford EL (2003) Molecular systematics of Psocomorpha (Psocoptera). Syst Entomol 28:409–416

    Google Scholar 

  • Johnson KP, Whiting MF (2002) Multiple genes and monophyly of Ischnocera (Insecta: Phthiraptera). Mol Phylogenet Evol 22:101–110

    PubMed  Google Scholar 

  • Johnson KP, Adams RJ, Clayton DH (2001a) Molecular systematics of Goniodidae (Insecta: Phthiraptera). J Parasitol 87:862–869

    PubMed  Google Scholar 

  • Johnson KP, Drown DM, Clayton DH (2001b) A data based parsimony method of cophylogenetic analysis. Zool Scripta 30:79–87

    Google Scholar 

  • Johnson KP, Yoshizawa K, Smith VS (2004) Multiple origins of parasitism in lice. Proc R Soc Lond B 271:1771–1776

    Google Scholar 

  • Kim KC, Ludwig HW (1978) The family classification of the Anoplura. Syst Entomol 3:249–284

    Google Scholar 

  • Lecointre G, Philippe H, Lê HLV, Guyader HL (1993) Species sampling has a major impact on phylogenetic inference. Mol Phylogenet Evol 2:205–224

    PubMed  Google Scholar 

  • Lyal CHC (1985) Phylogeny and classification of the Psocodea, with particular reference to the lice (Psocodea: Phthiraptera). Syst Entomol 10:145–165

    Google Scholar 

  • Marshall IK (2003) A morphological phylogeny for four families of Amblyceran lice (Phthiraptera: Amblycera: Menoponidae, Boopidae, Laemobothriidae, Ricinidae). Zool J Linnean Soc 138:39–82

    Google Scholar 

  • Paterson AM, Wallis GP, Wallis LJ, Gray RD (2000) Seabird and louse coevolution: complex histories revealed by 12 S rRNA sequences and reconciliation analyses. Syst Biol 49:383–399

    PubMed  Google Scholar 

  • Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818

    CAS  PubMed  Google Scholar 

  • Robinson-Rechavi M, Huchon D (2000) RRTree: relative-rate tests between groups of sequences on a phylogenetic tree. Bioinformatics 16:296–297

    PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Smith VS (2000) Basal ischnoceran louse phylogeny (Phthiraptera: Ischnocera: Goniodidae and Heptapsogasteridae). Syst Entomol 25:73–94

    Google Scholar 

  • Smith VS (2001) Avian louse phylogeny (Phthiraptera: Ischnocera): a cladistic study based on morphology. Zool J Linnean Soc 132:81–144

    Google Scholar 

  • Sorenson MD (1999) TreeRot, version 2. Boston University, Boston, MA, USA

    Google Scholar 

  • Swofford DL (2002) PAUP* . Phylogenetic Analysis Using Parsimony (* and Other Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts

    Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 24:4876–4882

    Google Scholar 

  • Wheeler WC, Whiting M, Wheeler QD, Carpenter JM (2001) The phylogeny of the extant hexapod orders. Cladistics 17:113–169

    Google Scholar 

  • Whiting MF, Carpenter JC, Wheeler QD, Wheeler WC (1997) The strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18 and 28 S ribosomal DNA sequences and morphology. Syst Biol 46:1–68

    PubMed  Google Scholar 

  • Yoshizawa K (2002) Phylogeny and higher classification of suborder Psocomorpha (Insecta: Psocodea: ‘Psocoptera’). Zool J Linnean Soc 136:371–400

    Google Scholar 

  • Yoshizawa K, Johnson KP (2003) Phylogenetic position of Phthiraptera (Insecta: Paraneoptera) and elevated rate of evolution in mitochondrial 12 and 16 S rDNA. Mol Phylogenet Evol 29:102–114

    PubMed  Google Scholar 

  • Yoshizawa K, Saigusa T (2001) Phylogenetic analysis of paraneopteran orders (Insecta: Neoptera) based on forewing base structure, with comments on monophyly of Auchenorrhyncha (Hemiptera). Syst Entomol 26:1–13

    Google Scholar 

  • Yoshizawa K, Saigusa T (2003) Phylogenetic analysis of paraneopteran orders (Insecta: Neoptera) based on forewing base structure, with comments on monophyly of Auchenorrhyncha (Hemiptera). Syst Entomol 26:1–13

    Google Scholar 

Download references

Acknowledgements

We thank the following people who generously donated insects for this study: C. Smithers, S. Cameron, M. Whiting, R. Palma, D. Clayton and L. Durden. This study was supported by an Australian Research Council grant to SCB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen C. Barker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murrell, A., Barker, S.C. Multiple origins of parasitism in lice: phylogenetic analysis of SSU rDNA indicates that the Phthiraptera and Psocoptera are not monophyletic. Parasitol Res 97, 274–280 (2005). https://doi.org/10.1007/s00436-005-1413-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-005-1413-8

Keywords

Navigation