Skip to main content

Advertisement

Log in

Global transcriptional analysis of the phosphate starvation response in Sinorhizobium meliloti strains 1021 and 2011

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

The global response to phosphate starvation was analysed at the transcriptional level in two closely related strains of Sinorhizobium meliloti, Rm1021 and Rm2011. The Pho regulon is known to be induced by PhoB under conditions of phosphate limitation. Ninety-eight genes were found to be significantly induced (more than three-fold) in a phoB -dependent manner in phosphate-stressed cells, and phoB -independent repression of 86 genes was observed. Possible roles of these genes in the phosphate stress response are discussed. Twenty new putative PHO box sequences were identified in regions upstream of 17 of the transcriptional units that showed phoB -dependent, or partially phoB -dependent, regulation, indicating direct regulation of these genes by PhoB. Despite the overall similarity between the phosphate stress responses in Rm1021 and Rm2011, lower induction rates were found for a set of phoB -dependent genes in Rm1021. Moreover, Rm1021 exhibited moderate constitutive activation of 12 phosphate starvation-inducible, phoB -dependent genes when cells were grown in a complex medium. A 1-bp deletion was observed in the pstC ORF in Rm1021, which results in truncation of the protein product. This mutation is probably responsible for the expression of phosphate starvation-inducible genes in Rm1021 in the absence of phosphate stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2A, B
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bardin SD, Finan TM (1998) Regulation of phosphate assimilation in Rhizobium ( Sinorhizobium) meliloti. Genetics 148:1689–1700

    CAS  PubMed  Google Scholar 

  • Bardin S, Dan S, Osteras M, Finan TM (1996) A phosphate transport system is required for symbiotic nitrogen fixation by Rhizobium meliloti. J Bacteriol 178:4540–4547

    CAS  PubMed  Google Scholar 

  • Bartels FW, Baumgarth B, Anselmetti D, Ros R, Becker A (2003) Specific binding of the regulatory protein ExpG to promoter regions of the galactoglucan biosynthesis gene cluster of Sinorhizobium meliloti -- a combined molecular biology and force spectroscopy investigation. J Struct Biol 143:145–152

    Article  CAS  PubMed  Google Scholar 

  • Becker A, Rüberg S, Küster H, Roxlau AA, Keller M, Ivashina T, Cheng HP, Walker GC, Pühler A (1997) The 32-kilobase exp gene cluster of Rhizobium meliloti directing the biosynthesis of galactoglucan: genetic organization and properties of the encoded gene products. J Bacteriol 179:1375–1384

    CAS  PubMed  Google Scholar 

  • Becker A, Rüberg S, Baumgarth B, Bertram-Drogatz PA, Quester L, Pühler A (2002) Regulation of succinoglycan and galactoglucan biosynthesis in Sinorhizobium meliloti. J Mol Microbiol Biotechnol 4:187–190

    CAS  PubMed  Google Scholar 

  • Becker A, et al (2004) Global changes in gene expression in Sinorhizobium meliloti 1021 under microoxic and symbiotic conditions. Mol Plant-Microbe Interact 17:292–303

    Google Scholar 

  • Beringer JE (1974) R factor transfer in Rhizobium leguminosarum. J Gen Microbiol 84:188–198

    PubMed  Google Scholar 

  • Birkey SM, Liu W, Zhang X, Duggan MF, Hulett FM (1998) Pho signal transduction network reveals direct transcriptional regulation of one two-component system by another two-component regulator: Bacillus subtilis PhoP directly regulates production of ResD. Mol Microbiol 30:943–953

    Article  CAS  PubMed  Google Scholar 

  • Bruns CM, Anderson DS, Vaughan KG, Williams PA, Nowalk AJ, McRee DE, Mietzner TA (2001) Crystallographic and biochemical analyses of the metal-free Haemophilus influenzae Fe3+-binding protein. Biochemistry 40:15631–15637

    Article  CAS  Google Scholar 

  • Carrondo MA (2003) Ferritins, iron uptake and storage from the bacterioferritin viewpoint. EMBO J 22:1959–1968

    Article  CAS  PubMed  Google Scholar 

  • Casse F, Boucher C, Julliot JS, Michel M, Denarié J (1979) Identification and characterization of large plasmids in Rhizobium meliloti using agarose gel electrophoresis. J Gen Microbiol 113:229–242

    CAS  Google Scholar 

  • Chen L, Roberts MF (2000) Overexpression, purification, and analysis of complementation behavior of E. coli SuhB protein: comparison with bacterial and archaeal inositol monophosphatases. Biochemistry 39:4145–4153

    Article  CAS  PubMed  Google Scholar 

  • DeRisi JL, Iyer VR, Brown PO (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Sciences 278:680–686

    Article  CAS  Google Scholar 

  • Diehl F, Grahlmann S, Beier M, Hoheisel JD (2001) Manufacturing DNA microarrays of high spot homogeneity and reduced background signal. Nucleic Acids Res 29:e38

    CAS  PubMed  Google Scholar 

  • Djordjevic MA, et al (2003) A global analysis of protein expression profiles in Sinorhizobium meliloti: discovery of new genes for nodule occupancy and stress adaptation. Mol Plant Microbe Interact 16:508–524

    CAS  PubMed  Google Scholar 

  • Dondrup M, Goesmann A, Bartels D, Kalinowski J, Krause L, Linke B, Rupp O, Sczyrba A, Pühler A, Meyer F (2003) EMMA: a platform for consistent storage and efficient analysis of microarray data. J Biotechnol 106:135–146

    Article  CAS  PubMed  Google Scholar 

  • Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868

    CAS  PubMed  Google Scholar 

  • Finan TM, Weidner S, Chain P, Becker A, Wong K, Cowie A, Buhrmester J, Vorhölter F-J, Golding B, Pühler A (2001) The complete sequence of the Sinorhizobium meliloti pSymB megaplasmid. Proc Nat Acad Sci USA 98:9889–9894

    Article  CAS  PubMed  Google Scholar 

  • Fisher HM (1994) Genetic regulation of nitrogen fixation in rhizobia. Microbiol Rev 58:352–386

    CAS  PubMed  Google Scholar 

  • Galibert F, et al (2001) The composite genome of the legume symbiont Sinorhizobium meliloti. Science 293:668–672

    CAS  PubMed  Google Scholar 

  • Geiger O, Rohrs V, Weissenmayer B, Finan TM, Thomas-Oates JE (1999) The regulator gene phoB mediates phosphate stress-controlled synthesis of the membrane lipid diacylglyceryl-N,N,N-trimethylhomoserine in Rhizobium ( Sinorhizobium) meliloti. Mol Microbiol 32:63–73

    Article  CAS  PubMed  Google Scholar 

  • Gerard F, Dri AM, Moreau PL (1999) Role of Escherichia coli RpoS, LexA and H-NS global regulators in metabolism and survival under aerobic, phosphate-starvation conditions. Microbiology 145:1547–1562

    CAS  PubMed  Google Scholar 

  • Han JS, Park JY, Lee YS, Thony B, Hwang DS (1999) PhoB-dependent transcriptional activation of the iciA gene during starvation for phosphate in Escherichia coli. Mol Gen Genet 262:448–452

    Article  CAS  PubMed  Google Scholar 

  • Hove-Jensen B (1996) Phosphoribosyl diphosphate synthetase-independent NAD de novo synthesis in Escherichia coli: a new phenotype of phosphate regulon mutants. J Bacteriol 178:714–722

    CAS  PubMed  Google Scholar 

  • Ishige T, Krause M, Bott M, Wendisch VF, Sahm H (2003) The phosphate starvation stimulon of Corynebacterium glutamicum determined by DNA microarray analyses. J Bacteriol 185:4519–4529

    Article  CAS  PubMed  Google Scholar 

  • Janczarek M, Skorupska A (2001) The Rhizobium leguminosarum bv. trifolii pssB gene product is an inositol monophosphatase that influences exopolysaccharide synthesis. Arch Microbiol 175:143–151

    Article  CAS  PubMed  Google Scholar 

  • Klug RM, Benning C (2001) Two enzymes of diacylglyceryl-O-4′-(N,N,N,-trimethyl)homoserine biosynthesis are encoded by btaA and btaB in the purple bacterium Rhodobacter sphaeroides. Proc Natl Acad Sci USA 98:5910–5915

    Article  CAS  PubMed  Google Scholar 

  • Lund PA (2001) Microbial molecular chaperones. Adv Microbial Physiol 44:93–140

    Article  CAS  Google Scholar 

  • Lynch D, O’Brien J, Welch T, Clarke P, Cuiv PO, Crosa JH, O’Connell M (2001) Genetic organization of the region encoding regulation, biosynthesis, and transport of rhizobactin 1021, a siderophore produced by Sinorhizobium meliloti. J Bacteriol 183:2576–2585

    Article  CAS  PubMed  Google Scholar 

  • Marketon MM, Gronquist MR, Eberhard A, Gonzalez JE (2002) Characterization of the Sinorhizobium meliloti sinR / sinI locus and the production of novel N-acyl homoserine lactones. J Bacteriol 184:5686–5695

    CAS  PubMed  Google Scholar 

  • Meade HM, Signer ER (1977) Genetic mapping of Rhizobium meliloti. Proc Natl Acad Sci USA 74:2076–2078

    CAS  PubMed  Google Scholar 

  • Mendrygal KE, Gonzalez JE (2000) Environmental regulation of exopolysaccharide production in Sinorhizobium meliloti. J Bacteriol 182:599–606

    Article  CAS  PubMed  Google Scholar 

  • Merlin C, Masters M, McAteer S, Coulson A (2003) Why is carbonic anhydrase essential to Escherichia coli? J Bacteriol 185:6415–6424

    Article  CAS  PubMed  Google Scholar 

  • Metcalf WW, Steed PM, Wanner BL (1990) Identification of phosphate starvation-inducible genes in Escherichia coli K-12 by DNA sequence analysis of psi::lacZ (Mud1) transcriptional fusions. J Bacteriol 172:3191–3200

    CAS  PubMed  Google Scholar 

  • Monds RD, Silby MW, Mahanty HK (2001) Expression of the Pho regulon negatively regulates biofilm formation by Pseudomonas aureofaciens PA147-2. Mol Microbiol 42:415–426

    Article  CAS  PubMed  Google Scholar 

  • Moreau PL, Gerard F, Lutz NW, Cozzone P (2001) Non-growing Escherichia coli cells starved for glucose or phosphate use different mechanisms to survive oxidative stress. Mol Microbiol 39:1048–1060

    Article  CAS  PubMed  Google Scholar 

  • Muller PY, Janovjak H, Miserez AR, Dobbie Z (2002) Processing of gene expression data generated by quantitative real-time RT-PCR. Biotechniques 32:1372–1378

    CAS  PubMed  Google Scholar 

  • Parker GF, Higgins TP, Hawkes T, Robson RL (1999) Rhizobium ( Sinorhizobium) meliloti phn genes: characterization and identification of their protein products. J Bacteriol 181:389–395

    CAS  PubMed  Google Scholar 

  • Quester I, Becker A (2004) Four promoters being subject to regulation by ExoR and PhoB direct transcription of the Sinorhizobium meliloti exoYFQ operon involved in biosynthesis of succinoglycan. J Mol Microbiol Biotechnol, in press

  • Reuber TL, Walker GC (1993) Biosynthesis of succinoglycan, a symbiotically important exopolysaccharide of Rhizobium meliloti. Cell 74:269–280

    Article  CAS  PubMed  Google Scholar 

  • Rüberg S, Pühler A, Becker A (1999) Biosynthesis of the exopolysaccharide galactoglucan in Sinorhizobium meliloti is subject to a complex control by the phosphate-dependent regulator PhoB and the proteins ExpG and MucR. Microbiology 145:603–611

    PubMed  Google Scholar 

  • Rüberg S, Tian ZX, Krol E, Linke B, Meyer F, Wang Y, Pühler A, Weidner S, Becker A (2003) Construction and validation of a Sinorhizobium meliloti whole genome DNA microarray: genome-wide profiling of osmoadaptive gene expression. J Biotechnol 106:255–268

    Article  PubMed  Google Scholar 

  • Ruiz N, Silhavy TJ (2003) Constitutive activation of the Escherichia coli Pho regulon upregulates rpoS translation in an Hfq-dependent fashion. J Bacteriol 185:5984–5992

    Article  CAS  PubMed  Google Scholar 

  • Schoenlein PV, Lui J, Gallman L, Ely B (1992) The Caulobacter crescentus flaFG region regulates synthesis and assembly of flagellin proteins encoded by two genetically unlinked gene clusters. J Bacteriol 174:6046–6053

    CAS  PubMed  Google Scholar 

  • Slater H, Crow M, Everson L, Salmond GP (2003) Phosphate availability regulates biosynthesis of two antibiotics, prodigiosin and carbapenem, in Serratia via both quorum-sensing-dependent and -independent pathways. Mol Microbiol 47:303–320

    Article  CAS  PubMed  Google Scholar 

  • Soutourina OA, Bertin PN (2003) Regulation cascade of flagellar expression in Gram-negative bacteria. FEMS Microbiol Rev 27:505–523

    Article  CAS  PubMed  Google Scholar 

  • Spira B, Yagil E (1998) The relation between ppGpp and the PHO regulon in Escherichia coli. Mol Gen Genet 257:469–477

    CAS  PubMed  Google Scholar 

  • Summers ML, Elkins JG, Elliott BA, McDermott TR (1998) Expression and regulation of phosphate stress inducible genes in Sinorhizobium meliloti. Mol Plant Microbe Interact 11:1094–1101

    CAS  PubMed  Google Scholar 

  • Summers ML, Denton MC, McDermott TR (1999) Genes coding for phosphotransacetylase and acetate kinase in Sinorhizobium meliloti are in an operon that is inducible by phosphate stress and controlled by phoB. J Bacteriol 181:2217–2224.

    CAS  PubMed  Google Scholar 

  • Suziedeliene E, Suziedelis K, Garbenciute V, Normark S (1999) The acid-inducible asr gene in Escherichia coli: transcriptional control by the phoBR operon. J Bacteriol 181:2084–2093

    CAS  PubMed  Google Scholar 

  • VanBogelen RA, Olson ER, Wanner BL, Neidhardt FC (1996) Global analysis of proteins synthesized during phosphorus restriction in Escherichia coli. J Bacteriol 178:4344–4366

    CAS  PubMed  Google Scholar 

  • Voegele RT, Bardin S, Finan TM (1997) Characterization of the Rhizobium ( Sinorhizobium) meliloti high- and low-affinity phosphate uptake systems. J Bacteriol 179:7226–7232

    CAS  PubMed  Google Scholar 

  • Wais RJ, Wells DH, Long SR (2002) Analysis of differences between Sinorhizobium meliloti 1021 and 2011 strains using the host calcium spiking response. Mol Plant Microbe Interact 15:1245–1252

    CAS  PubMed  Google Scholar 

  • Wanner BL (1996) Phosphorus assimilation and control of the phosphate regulon. In: Neidhardt FC, Curtiss R III, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella: sellular and molecular biology (2nd edn). ASM Press, Washington DC, pp 1357–1381

  • Wei X, Bauer WD (1998) Starvation-induced changes in motility, chemotaxis, and flagellation of Rhizobium meliloti. Appl Environ Microbiol. 64:1708–1714

    Google Scholar 

  • Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J, Speed TP (2002) Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acid Res 30:e15

    Article  PubMed  Google Scholar 

  • Zhan HJ, Lee CC, Leigh JA (1991) Induction of the second exopolysaccharide (EPSb) in Rhizobium meliloti SU47 by low phosphate concentrations. J Bacteriol 173:7391–7394

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grant BIZ 7 and SFB613 from Deutsche Forschungsgemeinschaft and Grant No. 031U213D from the Bundesministerium für Bildung und Forschung, Germany. We thank Silvia Rüberg and Larissa Sharypova for helpful discussions and Helge Küster for critical reading of the manuscript

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Becker.

Additional information

Communicated by A. Kondorosi#

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krol, E., Becker, A. Global transcriptional analysis of the phosphate starvation response in Sinorhizobium meliloti strains 1021 and 2011. Mol Genet Genomics 272, 1–17 (2004). https://doi.org/10.1007/s00438-004-1030-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-004-1030-8

Keywords

Navigation