Skip to main content
Log in

Physical mapping of a rice lesion mimic gene, Spl1 , to a 70-kb segment of rice chromosome 12

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

The rice lesion mimic mutant spotted leaf 1 ( spl1) was first identified in the rice ( Oryza sativa) cultivar Asahi in 1965. This mutant displayed spontaneous disease-like lesions in the absence of any pathogen, and was found to confer resistance to multiple isolates of rice blast. We employed a map-based cloning strategy to localize the Spl1 gene. A total of ten cleaved amplified polymorphic sequence (CAPS) markers linked to the Spl1 gene were identified and mapped to an 8.5-cM region on chromosome 12. A high-resolution genetic map was developed using these ten CAPS markers and a segregating population consisting of 3202 individuals. A BAC contig containing four BAC clones was constructed, and Spl1 was localized to a 423-kb region. Seven spl1 mutants were obtained from the IR64 deletion mutant collection, and molecular analysis using these mutants delimited the Spl1 gene to a 70-kb interval, covered by two BAC clones. These results provide the basis for cloning this gene, which is involved in cell death and disease resistance in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2A–E
Fig. 3A–C
Fig. 4A–C

Similar content being viewed by others

References

  • Arase S, Fujita K, Uehara T, Honda Y, Isota J (2000) Light-enhanced resistance to Magnaporthe grisea infection in the rice Sekiguchi lesion mutants. J Phytopathol 148:197–203

    Article  Google Scholar 

  • Arase S, Ueno M, Toko M, Honda Y, Itho K, Ozoe Y (2001) Light-dependent accumulation of tryptamine in the rice Sekiguchi lesion mutant infected with Magnaporthe grisea. J Phytopathol 149:409–413

    Article  CAS  Google Scholar 

  • Bent AF (1996) Plant disease resistance genes: function meets structure. Plant Cell 8:1757–1771

    Article  CAS  PubMed  Google Scholar 

  • Bradeen JM, Simon PW (1998) Conversion of an AFLP fragment linked to the carrot Y2 locus to a simple, co-dominant, PCR-based marker form. Theor Appl Genet 97:960–967

    Article  CAS  Google Scholar 

  • Bruggemann E, Handwerger K, Essex C, Storz G (1996) Analysis of fast neutron-generated mutants at the Arabidopsis thaliana HY4 locus. Plant J 10:755-760

    Article  CAS  PubMed  Google Scholar 

  • Büschges R, Hollricher K, Panstruga R, Simons G, Wolter M, Frijters A, Van Daelen R, Van der Lee T, Dergaarde P, Vos P, Salamini F, Schulze-Lefert P (1997) The barley Mlo gene: a novel control element of plant pathogen resistance. Cell 88:695–705

    Article  PubMed  Google Scholar 

  • Chen M-S, et al (2002) An integrated physical and genetic map of the rice genome. Plant Cell 14:537–545

    Article  PubMed  Google Scholar 

  • Dangl JL, Dietrich RA, Richberg MH (1996) Death don’t have no mercy: cell death programs in plant-microbe interactions. Plant Cell 8:1793–1807

    Article  CAS  PubMed  Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1984) Maize DNA miniprep. In: Russell M (ed) Molecular biology of plants: a laboratory course manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., pp 36–37

  • Dietrich RA, Delaney TP, Uknes SJ, Ward ER, Ryals JA, Dangl JL (1994) Arabidopsis mutants simulating disease resistance response. Cell 77:565–577

    Article  CAS  PubMed  Google Scholar 

  • Dietrich RA, Richberg MH, Schmidt R, Dean C, Dangl JL (1997) A novel zinc finger protein is encoded by the Arabidopsis LSD1 gene and functions as a negative regulator of plant cell death. Cell 88:685–694

    Article  CAS  PubMed  Google Scholar 

  • Gray J, Close PS, Briggs SP, Johal GS (1997) A novel suppressor of cell death in plants encoded by the Llsl gene of maize. Cell 89:25–31

    Article  CAS  PubMed  Google Scholar 

  • Greenberg JT (1997) Programmed cell death in plant-pathogen interactions. Annu Rev Plant Physiol Plant Mol Biol 48:525–545

    Article  CAS  PubMed  Google Scholar 

  • Greenberg JT, Ausubel FM (1993) Arabidopsis mutants compromised for the control of cellular damage during pathogenesis and aging. Plant J 4:327–341

    Article  CAS  PubMed  Google Scholar 

  • Hammond-Kosack KE, Jones JDG (1996) Resistance gene-dependent plant defense responses. Plant Cell 8:1773–1791

    Article  CAS  PubMed  Google Scholar 

  • Heath MC (2000) Hypersensitive response-related death. Plant Mol Biol 44:321–334

    Article  CAS  PubMed  Google Scholar 

  • Hu G, Yalpani N, Briggs SP, Johal GS (1998) A porphyrin pathway impairment is responsible for the phenotype of a dominant disease lesion mimic mutant of maize. Plant Cell 10:1095–1105

    Article  CAS  PubMed  Google Scholar 

  • Isota J, Kadowaki Y, Arase S (1996) Spontaneous occurrence of the Sekiguchi lesion on rice cv. Himenomochi. Ann Phytopathol Soc Jpn 62:167–169

    Google Scholar 

  • Jabs T, Dietrich RA, Dangl JL (1996) Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide. Science 273:1853–1856

    CAS  PubMed  Google Scholar 

  • Kinoshita CT (1995) Report of committee on gene symbolization, nomenclature and linkage groups. Rice Genet Newslett 12:9–115

    Google Scholar 

  • Kiyosawa S (1970) Inheritance of a particular sensitivity of the rice variety, Sekiguchi Asahi, to pathogens and chemicals, and linkage relationship with blast resistance. Bull Nat Inst Agric Sci (Jpn) Ser D Physiol Genet 21:61–71

    Google Scholar 

  • Lam E, Kato N, Lawton M (2001) Programmed cell death, mitochondria and the plant hypersensitive response. Nature 411:848-853

    Article  CAS  PubMed  Google Scholar 

  • Leung H, et al (2001) Deletion mutants for functional genomics: progress in phenotyping, sequence assignment, and database development. In: Rice Genetics IV. Science Publishers, New Delhi, pp 239–251

  • Lorrain S, Vailleau F, Balague C, Roby D (2003) Lesion mimic mutants: keys for deciphering cell death and defense pathways in plants? Trends Plant Sci 8:263–271

    Article  CAS  PubMed  Google Scholar 

  • Marchetti MA, Bollich CN, Uecker FA (1983) Spontaneous occurrence of the Sekiguchi lesion in two American rice lines: its induction, inheritance, and utilization. Phytopathology 73:603–606

    Google Scholar 

  • Mizobuchi R, Hirabayashi H, Kaji R, Nishizawa Y, Yoshimura A, Satoh H, Ogawa T, Okamoto M (2002) Isolation and characterization of rice lesion-mimic mutants with enhanced resistance to rice blast and bacterial blight. Plant Sci 163:345–353

    Article  CAS  Google Scholar 

  • Nakamura S, Asakawa S, Ohmido N, Fukui K, Shimizu N, Kawasaki S (1997) Construction of an 800-kb contig in the near-centromeric region of the rice blast resistance gene Pi-ta 2 using a highly representative rice BAC library. Mol Gen Genet 254:611–620

    Article  CAS  PubMed  Google Scholar 

  • Okubara PA, Anderson PA, Ochoa OE, Michelmore RW (1994) Mutants of downy mildew resistance in Lactuca sativa (lettuce). Genetics 137:867-874

    CAS  PubMed  Google Scholar 

  • Reardon JT, Liljestrand-Golden CA, Dusenbery RL, Smith PD (1987) Molecular analysis of diepoxybutane-induced mutations at the rosy locus of Drosophila melanogaster. Genetics 115:323-331

    CAS  Google Scholar 

  • Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner HY, Hunt MD (1996) Systemic acquired resistance. Plant Cell 8:1809–1819

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual (2nd edn). Cold Spring Harbor Laboratory Press, Cold Spring Harbor Laboratory, N.Y.

    Google Scholar 

  • Sekiguchi Y, Furuta T (1965) On a rice mutant showing particular reaction to some spotting disease. Preliminary report. Ann Phytopathol Soc Jpn 30:71–72 (in Japanese)

    Google Scholar 

  • Sherman JD, Stack SM (1995) Two-dimensional spreads of synaptonemal complexes from solanaceous plants. High-resolution recombination nodule map for tomato ( Lycopersicon esculentum). Genetics 141:683–708

    CAS  PubMed  Google Scholar 

  • Shirley BS, Hanley S, Goodman HM (1992) Effects of ionizing radiation on a plant genome: analysis of two Arabidopsis transparent testa mutations. Plant Cell 4:333-347

    Article  CAS  PubMed  Google Scholar 

  • Simmons C, Hantke S, Grant S, Johal GS, Briggs SP (1998) The maize lethal leaf spot 1 mutant has elevated resistance to fungal infection at the leaf epidermis. Mol Plant-Microbe Interact 11:1110–1118

  • Singh K, Multani DS, Khush GS (1995) A new spotted leaf mutant in rice. Rice Genet Newslett 12:192–193

    Google Scholar 

  • Tanksley SD, et al (1992) High density molecular linkage maps of the tomato and potato genomes. Genetics 132:1141–1160

    CAS  PubMed  Google Scholar 

  • Tarchini R, Biddle P, Wineland R, Tingey S, Rafalski A (2000) The complete sequence of 340 kb of DNA around the rice Adh1 - Adh2 region reveals interrupted colinearity with maize chromosome 4. Plant Cell 12:381-391

    Article  CAS  PubMed  Google Scholar 

  • Tomiyama K (1963) Physiology and biochemistry of disease resistance of plants. Annu Rev Phytopathol 1:295–324

    Article  CAS  Google Scholar 

  • Ueno M, Shibata H, Kihara J, Honda Y, Arase S (2003) Increased tryptophan decarboxylase and monoamine oxidase activities induce Sekiguchi lesion formation in rice infected with Magnaporthe grisea. Plant J 36:215–228

    Article  CAS  PubMed  Google Scholar 

  • Wang ZX, Yano M, Yamanouchi U, Iwamoto M, Monna L, Hayasaka H, Katayose Y, Sasaki T (1999) The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant J 19:55-64

    Article  PubMed  Google Scholar 

  • Yamanouchi U, Yano M, Lin H, Ashikari M, Yamada K (2002) A rice spotted leaf gene, Spl7 , encodes a heat stress transcription factor protein. Proc Natl Acad Sci USA 99:7530–7535

    Article  CAS  PubMed  Google Scholar 

  • Yin ZC, Chen J, Zeng LR, Goh M, Leung H, Khush GS, Wang GL (2000) Characterizing rice lesion mimic mutants and identifying a mutant with broad-spectrum resistance to rice blast and bacterial blight. Mol Plant-Microbe Interact 13:869–876

  • Zeng L, Yin Z, Chen J, Leung H, Wang GL (2002) Fine genetic mapping and physical delimitation of the lesion mimic gene Spl11 to a 160 kb DNA segment of the rice genome. Mol Genet Genomics 268:253–261

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 30028016) and the Basic Research Program (The ‘973’ Program, Grant No. TG2000016203) of the Ministry of Science and Technology of China. Work at IRRI was supported in part by the Swiss Agency for Cooperation and Development. We thank Alice Bordeos for assistance in genetic analysis and Bill Hardy for technical editing

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. He.

Additional information

Communicated by R. Hagemann

The first two authors contributed equally to the work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, G., Wang, L., Zhou, Z. et al. Physical mapping of a rice lesion mimic gene, Spl1 , to a 70-kb segment of rice chromosome 12. Mol Genet Genomics 272, 108–115 (2004). https://doi.org/10.1007/s00438-004-1040-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-004-1040-6

Keywords

Navigation