Skip to main content
Log in

Microarray analysis of RpoS-mediated gene expression in Escherichia coli K-12

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

The alternative sigma factor RpoS controls the expression of many stationary-phase genes in Escherichia coli and other bacteria. Though the RpoS regulon is a large, conserved system that is critical for adaptation to nutrient deprivation and other stresses, it remains incompletely characterized. In this study, we have used oligonucleotide arrays to delineate the transcriptome that is controlled by RpoS during entry into stationary phase of cultures growing in rich medium. The expression of known RpoS-dependent genes was confirmed to be regulated by RpoS, thus validating the use of microarrays for expression analysis. The total number of positively regulated stationary-phase genes was found to be greater than 100. More than 45 new genes were identified as positively controlled by RpoS. Surprisingly, a similar number of genes were found to be negatively regulated by RpoS, and these included almost all genes required for flagellum biosynthesis, genes encoding enzymes of the TCA cycle, and a physically contiguous group of genes located in the Rac prophage region. Negative regulation by RpoS is thus much more extensive than has previously been recognized, and is likely to be an important contributing factor to the competitive growth advantage of rpoS mutants reported in previous studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A, B
Fig. 2A, B
Fig. 3

Similar content being viewed by others

References

  • Aldea M, Hernandez-Chico C, de la Campa AG, Kushner SR, Vicente M (1988) Identification, cloning, and expression of bolA, an ftsZ -dependent morphogene of Escherichia coli. J Bacteriol 170:5169–5176

    CAS  PubMed  Google Scholar 

  • Altuvia S, Almiron M, Huisman G, Kolter R, Storz G (1994) The dps promoter is activated by OxyR during growth and by IHF and sigma S in stationary phase. Mol Microbiol 13:265–272

    CAS  PubMed  Google Scholar 

  • Arnqvist A, Olsen A, Normark S (1994) Sigma S-dependent growth-phase induction of the csgBA promoter in Escherichia coli can be achieved in vivo by sigma 70 in the absence of the nucleoid-associated protein H-NS. Mol Microbiol 13:1021–1032

    CAS  PubMed  Google Scholar 

  • Blattner FR, Plunkett G III, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J., Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y (1997) The complete genome sequence of Escherichia coli K-12. Science 277:1453–1474

    Article  CAS  PubMed  Google Scholar 

  • Casjens S (2003) Prophages and bacterial genomics: what have we learned so far? Mol Microbiol 49:277–300

    CAS  PubMed  Google Scholar 

  • Castanie-Cornet MP, Penfound TA, Smith D, Elliott JF, Foster JW (1999) Control of acid resistance in Escherichia coli. J Bacteriol 181:3525–3535

    CAS  PubMed  Google Scholar 

  • Chang L, Wei LI, Audia JP, Morton RA, Schellhorn HE (1999) Expression of the Escherichia coli NRZ nitrate reductase is highly growth phase dependent and is controlled by RpoS, the alternative vegetative sigma factor. Mol Microbiol 34:756–766

    Article  CAS  PubMed  Google Scholar 

  • Cheung KJ, Badarinarayana V, Selinger DW, Janse D, Church GM (2003) A microarray-based antibiotic screen identifies a regulatory role for supercoiling in the osmotic stress response of Escherichia coli. Genome Res 13:206–215

    Article  CAS  PubMed  Google Scholar 

  • Chilcott GS, Hughes KT (2000) Coupling of flagellar gene expression to flagellar assembly in Salmonella enterica serovar typhimurium and Escherichia coli. Microbiol Mol Biol Rev 64:694–708

    Article  CAS  PubMed  Google Scholar 

  • Clark AJ, Satin L, Chu CC (1994) Transcription of the Escherichia coli recE gene from a promoter in Tn5 and IS50. J Bacteriol 176:7024–7031

    CAS  PubMed  Google Scholar 

  • Colland F, Fujita N, Ishihama A, Kolb A (2002) The interaction between sigmaS, the stationary phase sigma factor, and the core enzyme of E. coli RNA polymerase. Genes Cells 7:233–247

    Article  CAS  PubMed  Google Scholar 

  • Conter A, Menchon C, Gutierrez C. (1997) Role of DNA supercoiling and rpoS sigma factor in the osmotic and growth phase-dependent induction of the gene osmE of Escherichia coli K12. J Mol Biol 273:75–83

    Article  CAS  PubMed  Google Scholar 

  • Cunningham L, Gruer MJ, Guest JR. (1997) Transcriptional regulation of the aconitase genes ( acnA and acnB) of Escherichia coli. Microbiology 143:3795–3805

    CAS  PubMed  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640-6645

    Article  CAS  PubMed  Google Scholar 

  • De Biase D, Tramonti A, Bossa F, Visca P (1999) The response to stationary-phase stress conditions in Escherichia coli: role and regulation of the glutamic acid decarboxylase system. Mol Microbiol 32:1198–1211

    Article  PubMed  Google Scholar 

  • Dosch DC, Helmer GL, Sutton SH, Salvacion FF, Epstein W (1991) Genetic analysis of potassium transport loci in Escherichia coli: evidence for three constitutive systems mediating uptake potassium. J Bacteriol 173:687–696

    CAS  PubMed  Google Scholar 

  • Dove SL, Smith SG, Dorman CJ (1997) Control of Escherichia coli type 1 fimbrial gene expression in stationary phase: a negative role for RpoS. Mol Gen Genet 254:13–20

    Article  CAS  PubMed  Google Scholar 

  • Farewell A, Kvint K, Nyström T (1995) Negative regulation by RpoS: a case of sigma factor competition. Mol Microbiol 29:1039–1051

    Article  Google Scholar 

  • Farrell MJ, Finkel SE (2003) The growth advantage in stationary-phase phenotype conferred by rpoS mutations is dependent on the pH and nutrient environment. J Bacteriol 185:7044–7052.

    Article  CAS  PubMed  Google Scholar 

  • Gordia S, Gutierrez C (1996) Growth-phase-dependent expression of the osmotically inducible gene osmC of Escherichia coli K-12. Mol Microbiol 19:729–736

    Article  CAS  PubMed  Google Scholar 

  • Gort AS, Ferber DM, Imlay JA (1999) The regulation and role of the periplasmic copper, zinc superoxide dismutase of Escherichia coli. Mol Microbiol 32:179–191

    Article  CAS  PubMed  Google Scholar 

  • Gruer MJ, Bradbury AJ, Guest JR (1997) Construction and properties of aconitase mutants of Escherichia coli. Microbiology 143:1837–1846

    CAS  PubMed  Google Scholar 

  • Gustavsson N, Diez A, Nystrom T (2002) The universal stress protein paralogues of Escherichia coli are co-ordinately regulated and co-operate in the defence against DNA damage. Mol Microbiol 43:107–117

    Article  CAS  PubMed  Google Scholar 

  • Hengge-Aronis R, Klein W, Lange R, Rimmele M, Boos W (1991) Trehalose synthesis genes are controlled by the putative sigma factor encoded by rpoS and are involved in stationary-phase thermotolerance in Escherichia coli. J Bacteriol 173:7918–7924

    CAS  PubMed  Google Scholar 

  • Hussein MJ, Green JM, Nichols BP (1998) Characterization of mutations that allow p-aminobenzoyl-glutamate utilization by Escherichia coli. J Bacteriol 180:6260–6268

    CAS  PubMed  Google Scholar 

  • Ibanez-Ruiz M, Robbe-Saule V, Hermant D, Labrude S, Norel F (2000) Identification of RpoS (sigma(S))-regulated genes in Salmonella enterica serovar typhimurium. J Bacteriol 182:5749–5756

    Article  CAS  PubMed  Google Scholar 

  • Jain N, Thatte J, Braciale T, Ley K, O’Connell M, Lee JK (2003) Local-pooled-error test for identifying differentially expressed genes with a small number of replicated microarrays. Bioinformatics 19:1945–1951

    Article  CAS  PubMed  Google Scholar 

  • Jishage M, Ishihama A (1995) Regulation of RNA polymerase sigma subunit synthesis in Escherichia coli: intracellular levels of sigma70 and sigma38. J Bacteriol 177:6832–6835

    CAS  PubMed  Google Scholar 

  • Jishage M, Iwata A, Ueda S, Ishihama A (1996) Regulation of RNA polymerase sigma subunit synthesis in Escherichia coli: intracellular levels of four species of sigma subunit under various growth conditions. J Bacteriol 178:5447–5451

    CAS  PubMed  Google Scholar 

  • Kalir S, McClure J, Pabbaraju K, Southward C, Ronen M, Leibler S, Surette MG, Alon U (2001) Ordering genes in a flagella pathway by analysis of expression kinetics from living bacteria. Science 292:2080–2083

    Article  CAS  PubMed  Google Scholar 

  • Khil PP, Camerini-Otero RD (2002) Over 1000 genes are involved in the DNA damage response of Escherichia coli. Mol Microbiol 44:89–105

    Article  CAS  PubMed  Google Scholar 

  • Kiley PJ, Beinert H (2003) The role of Fe-S proteins in sensing and regulation in bacteria. Curr Opin Microbiol 6:181–185

    Article  CAS  PubMed  Google Scholar 

  • Lange R, Hengge-Aronis R (1991) Growth phase-regulated expression of bolA and morphology of stationary-phase Escherichia coli cells are controlled by the novel sigma factor sigma S. J Bacteriol 173:4474–4481

    CAS  PubMed  Google Scholar 

  • Laurie AD, Bernardo LMD, Sze CC, Skarfstad E, Szalewska-Palasz A, Nyström T, Shingler V (2003) The role of the alarmone (p)ppGpp in sigmaN competition for core RNA polymerase. J Biol Chem 278:1494–1503

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Yeo WS, Roe JH (2004) Induction of the sufA operon encoding Fe-S assembly proteins by superoxide generators and hydrogen peroxide: involvement of OxyR, IHF and an unidentified oxidant-responsive factor. Mol Microbiol 51:1745–1755

    Article  CAS  PubMed  Google Scholar 

  • Lubitz SP, Weiner JH (2003) The Escherichia coli ynfEFGHI operon encodes polypeptides which are paralogues of dimethyl sulfoxide reductase (DmsABC). Arch Biochem Biophys 418:205–216

    Article  CAS  PubMed  Google Scholar 

  • Ma Z, Richard H, Tucker DL, Conway T, Foster JW (2002) Collaborative regulation of Escherichia coli glutamate-dependent acid resistance by two AraC-like regulators, GadX and GadW (YhiW). J Bacteriol 184:7001–7012

    Article  CAS  PubMed  Google Scholar 

  • Ma Z, Richard H, Foster JW (2003) pH-Dependent modulation of cyclic AMP levels and GadW-dependent repression of RpoS affect synthesis of the GadX regulator and Escherichia coli acid resistance. J Bacteriol 185:6852–6859

    Article  CAS  PubMed  Google Scholar 

  • Maeda H, Fujita N, Ishihama A (2000) Competition among seven Escherichia coli sigma subunits: relative binding affinities to the core RNA polymerase. Nucleic Acids Res 28:3497-3503

    Article  CAS  PubMed  Google Scholar 

  • Magnusson LU, Nystrom T, Farewell A (2003) Underproduction of sigma 70 mimics a stringent response. A proteome approach. J Biol Chem 278:968-973

    Article  CAS  PubMed  Google Scholar 

  • Makinoshima H, Aizawa S, Hayashi H, Miki T, Nishimura A, Ishihama A (2003) Growth phase-coupled alterations in cell structure and function of Escherichia coli. J Bacteriol 185:1338–1345

    Article  CAS  PubMed  Google Scholar 

  • Masuda N, Church GM (2002) Escherichia coli gene expression responsive to levels of the response regulator EvgA. J Bacteriol 184:6225–6234

    Article  CAS  PubMed  Google Scholar 

  • Nachin L, El Hassouni M, Loiseau L, Expert D, Barras F (2001) SoxR-dependent response to oxidative stress and virulence of Erwinia chrysanthemi: the key role of SufC, an orphan ABC ATPase. Mol Microbiol 39:960–972

    Google Scholar 

  • Notley-McRobb L, King T, Ferenci T (2002) rpoS mutations and loss of general stress resistance in Escherichia coli populations as a consequence of conflict between competing stress responses. J Bacteriol 184:806–811

    CAS  PubMed  Google Scholar 

  • Phadtare S, Kato I., Inouye M (2002) DNA microarray analysis of the expression profile of Escherichia coli in response to treatment with 4,5-dihydroxy-2-cyclopenten-1-one. J Bacteriol 184:6725–6729

    Article  CAS  PubMed  Google Scholar 

  • Pratt LA, Silhavy TJ (1996) The response regulator SprE controls the stability of RpoS. Proc Natl Acad Sci USA 93:2488–2492

    Article  CAS  PubMed  Google Scholar 

  • Rozen Y, Dyk TK, LaRossa RA, Belkin S (2001) Seawater activation of Escherichia coli gene promoter elements: dominance of rpoS control. Microb Ecol 42:635–643

    Article  CAS  PubMed  Google Scholar 

  • Schellhorn HE, Audia JP, Wei LI, Chang L (1998) Identification of conserved, RpoS-dependent stationary-phase genes of Escherichia coli. J Bacteriol 180:6283–6291

    CAS  PubMed  Google Scholar 

  • Schembri MA, Kjaergaard K, Klemm P (2003) Global gene expression in Escherichia coli biofilms. Mol Microbiol 48:253–267

    CAS  PubMed  Google Scholar 

  • Schlosser A, Kluttig S, Hamann A, Bakker EP (1991) Subcloning, nucleotide sequence, and expression of trkG, a gene that encodes an integral membrane protein involved in potassium uptake via the Trk system of Escherichia coli. J Bacteriol 173:3170–3176

    CAS  PubMed  Google Scholar 

  • Schneider TD, Stormo GD, Gold L, Ehrenfeucht A (1986) Information content of binding sites on nucleotide sequences. J Mol Biol 188:415–431

    CAS  PubMed  Google Scholar 

  • Schuster M, Hawkins AC, Harwood CS, Greenberg EP (2004) The Pseudomonas aeruginosa RpoS regulon and its relationship to quorum sensing. Mol Microbiol 51:973–985

    CAS  PubMed  Google Scholar 

  • Slavcev RA, Hayes S (2003) Stationary phase-like properties of the bacteriophage lambda Rex exclusion phenotype. Mol Genet Genomics 269:40–48

    CAS  PubMed  Google Scholar 

  • Strom AR, Kaasen I (1993) Trehalose metabolism in Escherichia coli: stress protection and stress regulation of gene expression. Mol Microbiol 8:205–210

    CAS  PubMed  Google Scholar 

  • Tanaka K, Takayanagi Y, Fujita N, Ishihama A, Takahashi H (1993) Heterogeneity of the principal sigma factor in Escherichia coli: the rpoS gene product, sigma 38, is a second principal sigma factor of RNA polymerase in stationary-phase Escherichia coli. Proc Natl Acad Sci USA 90:3511–3515

    CAS  PubMed  Google Scholar 

  • Tao H, Bausch C, Richmond C, Blattner FR, Conway T (1999) Functional genomics: expression analysis of Escherichia coli growing on minimal and rich media. J Bacteriol 181:6425–6440

    CAS  PubMed  Google Scholar 

  • Taylor BL, Zhulin IB, Johnson MS (1999) Aerotaxis and other energy-sensing behavior in bacteria. Annu Rev Microbiol 53:103–128

    Article  CAS  PubMed  Google Scholar 

  • Tramonti A, Visca P, De Canio M, Falconi M, De Biase D (2002) Functional characterization and regulation of gadX, a gene encoding an AraC/XylS-like transcriptional activator of the Escherichia coli glutamic acid decarboxylase system. J Bacteriol 184:2603–2613

    Article  CAS  PubMed  Google Scholar 

  • Venturi V (2003) Control of rpoS transcription in Escherichia coli and pseudomonas: why so different? Mol Microbiol 49:1–9

    Article  CAS  PubMed  Google Scholar 

  • Volkert MR, Hajec LI, Matijasevic Z, Fang FC, Prince R (1994) Induction of the Escherichia coli aidB gene under oxygen-limiting conditions requires a functional rpoS ( katF) gene. J Bacteriol 176:7638–7645

    CAS  PubMed  Google Scholar 

  • Von Ossowski I, Mulvey MR, Leco PA, Borys A, Loewen PC (1991) Nucleotide sequence of Escherichia coli katE, which encodes catalase HPII. J Bacteriol 173:514–520

    PubMed  Google Scholar 

  • Wagner AF, Schultz S, Bomke J, Pils T, Lehmann WD, Knappe J (2001) YfiD of Escherichia coli and Y06I of bacteriophage T4 as autonomous glycyl radical cofactors reconstituting the catalytic center of oxygen-fragmented pyruvate formate-lyase. Biochem Biophys Res Commun 285:456–462

    Article  CAS  PubMed  Google Scholar 

  • Wick LM, Quadroni M, Egli T (2001) Short- and long-term changes in proteome composition and kinetic properties in a culture of Escherichia coli during transition from glucose-excess to glucose-limited growth conditions in continuous culture and vice versa. Environ Microbiol 3:588–599

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Johnson RC (1995) Identification of genes negatively regulated by Fis: Fis and RpoS comodulate growth-phase-dependent gene expression in Escherichia coli. J Bacteriol 177:938–947

    CAS  PubMed  Google Scholar 

  • Yamashino T, Ueguchi C, Mizuno T (1995) Quantitative control of the stationary phase-specific sigma factor, sigma S, in Escherichia coli: involvement of the nucleoid protein H-NS. EMBO J 14:594–602

    CAS  PubMed  Google Scholar 

  • Yang WP, Ni LY, Somerville RL (1993) A stationary-phase protein of Escherichia coli that affects the mode of association between the Trp repressor protein and operator-bearing DNA. Proc Natl Acad Sci USA 90:5796–5800

    CAS  PubMed  Google Scholar 

  • Yim HH, Brems RL, Villarejo M (1994) Molecular characterization of the promoter of osmY, an rpoS -dependent gene. J Bacteriol 176:100–107

    CAS  PubMed  Google Scholar 

  • Zambrano MM, Kolter R (1996) GASPing for life in stationary phase. Cell 86:181–184

    Article  CAS  PubMed  Google Scholar 

  • Zheng M, Wang X, Templeton LJ, Smulski DR, LaRossa RA, Storz G (2001) DNA microarray-mediated transcriptional profiling of the Escherichia coli response to hydrogen peroxide. J Bacteriol 183:4562–4570

    Article  CAS  PubMed  Google Scholar 

  • Zinser ER, Kolter R. (1999) Mutations enhancing amino acid catabolism confer a growth advantage in stationary phase. J Bacteriol 181:5800–5807

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Matt Trudeau, Sabine Maxwell and Daniel Li for valuable technical assistance. This work was funded by grants from the National Research Council of Canada (NSERC) and Canadian Institutes of Health Research (CIHR) to HES

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. E. Schellhorn.

Additional information

Communicated by A. M. Hirsch

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patten, C.L., Kirchhof, M.G., Schertzberg, M.R. et al. Microarray analysis of RpoS-mediated gene expression in Escherichia coli K-12. Mol Genet Genomics 272, 580–591 (2004). https://doi.org/10.1007/s00438-004-1089-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-004-1089-2

Keywords

Navigation