Skip to main content
Log in

Biased distribution of microsatellite motifs in the rice genome

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Microsatellites are useful tools to study the extent of divergence between two taxonomic groups that show high sequence similarity. We have compared microsatellite distribution to illustrate genetic variation between the two rice genomes, Oryza sativa L. ssp. indica and Oryza sativa L. ssp. japonica. Microsatellite distribution proved to be non random as certain regions of very high microsatellite density have been identified. Microsatellite density in the subspecies japonica was computed marginally higher than in the subspecies indica in the genomic regions compared between the two subspecies. Unexpectedly high microsatellite densities were observed in 5′-untranslated regions of genes. These regions also displayed a clear motif bias. Some of the longest microsatellite repeats were found in intron sequences. Frequency, as well as motif bias was also noted with respect to the association of microsatellites with transposable elements. Microsatellite mutability values were exemplarily estimated for 90 loci by aligning the microsatellite containing regions between the two genomes. Poor rates of finding an orthologue corresponded with high microsatellite mutability in rice. These insights are likely to play a significant role in selecting microsatellite loci to be used in molecular breeding and studying evolutionary dynamics of the two subspecies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akagi H, Yokozeki Y, Inagaki A, Mori K, Fujimura T (2001) Micron, a microsatellite-targetting transposable element in the rice genome. Mol Genet Genomics 266:471–480

    Article  PubMed  CAS  Google Scholar 

  • Arcot SS, Wang Z, Weber JL, Deininger PL, Batzer MA (1995) Alu repeats: a source for the genesis of primate microsatellites. Genomics 29:136–144

    Article  PubMed  CAS  Google Scholar 

  • Ashley CT Jr, Warren ST (1995) Trinucleotide repeat expansion and human disease. Annu Rev Genet 29:703–728

    Article  PubMed  CAS  Google Scholar 

  • Baldi P, Brunak S, Chauvin Y, Pedersen AG (1999) Structural basis for triplet repeat disorders: a computational analysis. Bioinformatics 15:918–929

    Article  PubMed  CAS  Google Scholar 

  • Barry GF (2001) The use of Monsanto draft rice genome sequence in research. Plant Physiol 125:1164–1165

    Article  PubMed  CAS  Google Scholar 

  • Brock GJR, Anderson NH, Monckton DG (1999) Cis-acting modifiers of expanded CAG/CTG triplet repeat expandability: associations with flanking GC content and proximity to CpG islands. Hum Mol Genet 6:1061–1067

    Article  Google Scholar 

  • Bullock P, Miller J, Botchan M (1986) Effects of poly[d(pGpt)·d(pApC)] and poly[d(pCpG)·d(pCpG)] repeats on homologous recombination in somatic cells. Mol Cell Biol 6:3948–3953

    PubMed  CAS  Google Scholar 

  • Carels N, Hatey P, Jabbari K, Bernardi G (1998) Compositional properties of homologous coding sequences from plants. J Mol Evol 46:45–53

    Article  PubMed  CAS  Google Scholar 

  • Couronne O, Poliakov A, Bray N, Ishkhanov T, Ryaboy Drubin E, Pachter L, Dubchak I (2003) Strategies and tools for whole-genome alignments. Genome Res 13:73–80

    Article  PubMed  CAS  Google Scholar 

  • Ellegren H (2000) Microsatellite mutations in the germline: implications for evolutionary inference. Trends Genet 16:551–558

    Article  PubMed  CAS  Google Scholar 

  • Ellegren H (2004) Microsatellites: simple sequences with complex evolution. Nat Rev Genet 5:435–445

    Article  PubMed  CAS  Google Scholar 

  • Ellegren H, Moore S, Robinson N, Byrne K, Ward W, Sheldon BC (1997) Microsatellite evolution- a reciprocal study of repeat lengths at homologous loci in cattle and sheep. Mol Biol Evol 14:854–860

    PubMed  CAS  Google Scholar 

  • Feltus FA, Wan J, Schulze SR, Estill JC, Jiang N, Paterson AH (2004) An SNP resource for rice genetics and breeding based on subspecies indica and japonica genome alignments. Genome Res 14:1812–1819

    Article  PubMed  CAS  Google Scholar 

  • Fujimori S, Washio T, Higo K, Ohtomo Y, Murakami K, Matsubara K, Kawai J, Carninci P, Hayashizaki Y, Kikuchi S, Tomita M (2003) A novel feature of microsatellites in plants: a distribution gradient along the direction of transcription. FEBS Lett 554:17–22

    Article  PubMed  CAS  Google Scholar 

  • Gacy AM, Goellner G, Juranic N, Macura S, McMurray CT (1995) Trinucleotide repeats that expand in human disease form hairpin structures in vitro. Cell 81:533–540

    Article  PubMed  CAS  Google Scholar 

  • Gale MD, Devos KM (1998) Comparative genetics in the grasses. Proc Natl Acad Sci USA 95:1971–1974

    Article  PubMed  CAS  Google Scholar 

  • Gerber H-P, Seipel K, Georgiev O, Hofferer M, Hug M, Rusconi S, Schaffner W (1994) Transcriptional activation modulated by homopolymeric glutamine and proline stretches. Science 263:808–811

    Article  PubMed  CAS  Google Scholar 

  • Goff SA, Ricke D, Lan T-H, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchinson D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun W-L, Chen L, Cooper B, Park S, Wood TC, Mao L, Quali P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100

    Article  PubMed  CAS  Google Scholar 

  • Grover A, Sharma PC (2004) Occurrence of simple sequence repeats in potato ESTs is not random: an in silico study on distribution and length of simple sequence repeats. Potato J 31:95–102

    Google Scholar 

  • Grover A, Sharma PC (2007) Microsatellite motifs with moderate GC content are clustered around genes on Arabidopsis thaliana chromosome 2. In silico Biology (in press)

  • Han B, Xue Y (2003) Genome-wide intraspecific DNA-sequence variations in rice. Curr Opin Plant Biol 6:134–138

    Article  PubMed  CAS  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  Google Scholar 

  • Iwashita S, Koyama K, Nakamura Y (2001) VNTR sequence on human chromosome 11p15 that affects transcriptional activity. J Hum Genet 46:717–721

    Article  PubMed  CAS  Google Scholar 

  • Kashi Y, King D, Soller M (1997) Simple sequence repeats as a source of quantitative genetic variation. Trends Genet 13:74–78

    Article  PubMed  CAS  Google Scholar 

  • Katti MV, Ranjekar PK, Gupta VS (2001) Differential distribution of simple sequence repeats in eukaryotic genome sequences. Mol Biol Evol 18:1161–1167

    PubMed  CAS  Google Scholar 

  • Ma J, Bennetzen JL (2004) Rapid recent growth and divergence of rice nuclear genomes. Proc Natl Acad Sci USA 101:12404–12410

    Article  PubMed  CAS  Google Scholar 

  • Mao L, Devos KM, Zhu L, Gale MD (1997) Cloning and genetic mapping of wheat telomere-associated sequences. Mol Gen Genet 254:584–591

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka Y, Vigouroux Y, Goodman MM, Sanchez GJ, Buckler E, Doebley J (2002) A single domestication for maize shown by multilocus microsatellite genotyping. Proc Natl Acad Sci USA 99:6080–6084

    Article  PubMed  CAS  Google Scholar 

  • Mitas M, Yu A, Dill J, Kamp TJ, Chambers J, Haworth IS (1995) Hairpin properties of single stranded DNA containing a GC-rich triplet repeat: (CTG)15. Nucleic Acids Res 23:1050–1059

    Article  PubMed  CAS  Google Scholar 

  • Morgante M, Hanafey M, Powell W (2002) Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat Genet 30:194–200

    Article  PubMed  CAS  Google Scholar 

  • Murphy KE, Stringer JR (1986) RecA independent recombination of poly [d(GT)-d(CA)] in pBR322. Nucleic Acids Res 14:7325–7340

    Article  PubMed  CAS  Google Scholar 

  • Nadir E, Margalit H, Gallil T, Ben-Sasson SA (1996) Microsatellite spreading in the human genome. Evolutionary mechanisms and structural implications. Proc Natl Acad Sci USA 93:6470–6475

    Article  PubMed  CAS  Google Scholar 

  • Perutz MF, Johnson T, Suzuki M, Finch JT (1994) Glutamine repeats as a polar zippers: their possible role in inherited neurodegenerative diseases. Proc Natl Acad Sci USA 91:5355–5358

    Article  PubMed  CAS  Google Scholar 

  • Ramsay L, Macaulay M, Cradle L, Morgante M, Ivanissevich S-D, Maestri E, Powell W, Waugh R (1999) Intimate association of microsatellite repeats with retrotransposons and other dispersed repetitive elements in barley. Plant J 17:415

    Article  PubMed  CAS  Google Scholar 

  • Roder MS, Lapitan NLV, Sorrells ME, Tanksley SD (1993) Genetic and physical mapping of barley telomeres. Mol Gen Genet 238:294–303

    PubMed  CAS  Google Scholar 

  • Salse J, Piegue B, Cooke R, Delseny M (2002) Synteny between Arabidopsis thaliana and rice at the genome level: a tool to identify conservation in the ongoing rice genome sequencing project. Nucleic Acids Res 30:2316–2328

    Article  PubMed  CAS  Google Scholar 

  • Schlotterer C, Tautz D (1992) Slippage synthesis of simple sequence DNA. Nucleic Acids Res 20:211–215

    Article  PubMed  CAS  Google Scholar 

  • Schlotterer C (2000) Evolutionary dynamics of microsatellite DNA. Chromosoma 109:365–371

    Article  PubMed  CAS  Google Scholar 

  • Schwartz S, Kent WJ, Smit A, Zhang Z, Baertsch R, Hardison RC, Haussler D, Miller W (2003) Human-mouse alignments with BLASTZ. Genome Res 13:103–107

    Article  PubMed  CAS  Google Scholar 

  • Tatusova TA, Madden TL (1999) BLAST2 Sequences, a new tool for comparing protein and nucleotide sequences. FEMS Microbiol Lett 174:247–250

    Article  PubMed  CAS  Google Scholar 

  • Temnykh S, DeClerk G, Lukashova A, Lipovich L, Cartinhour S, McCouch S (2001) Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res 11:1441–1452

    Article  PubMed  CAS  Google Scholar 

  • The Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72:971–983

    Article  Google Scholar 

  • Theil T, Michalek W, Varshney RK, Graner A (2003) Exploiting EST databases for the development of cDNA derived microsatellite markers in barley (Hordeum vulgare L.). Theor Appl Genet 106:411–422

    Google Scholar 

  • Thuillet AC, Bru D, David J, Roumet P, Santoni S, Sourdille P, Bataillon T (2002) Direct estimation of mutation rate for 10 microsatellite loci in durum wheat, Triticum turgidum (L.) Thell. ssp durum Desf. Mol Biol Evol 19:122–125

    PubMed  CAS  Google Scholar 

  • Timchenko L, Monckton DG, Casey CT (1995) Myotonic dystrophy: an unstable CTG repeat in a protein kinase gene. Semin Cell Biol 6:13–19

    Article  PubMed  CAS  Google Scholar 

  • Toth G, Gaspari Z, Jurka J (2000) Microsatellites in different eukaryotic genomes: survey and analysis. Genome Res 10:967–981

    Article  PubMed  CAS  Google Scholar 

  • Treco D, Arnheim N (1986) The evolutionarily conserved repetitive sequence d(TG·AC)n promotes reciprocal exchange and generates unusual recombinant tetrads during yeast meiosis. Mol Cell Biol 6:3934–3947

    PubMed  CAS  Google Scholar 

  • Varshney RK, Thiel T, Stein N, Langridge P, Graner A (2002) In silico analysis on frequency and distribution of microsatellites in ESTs of some cereal species. Cell Mol Biol Lett 7:537–546

    PubMed  CAS  Google Scholar 

  • Vigouroux Y, McMullen M, Hittinger CT, Houchins K, Schulz L, Kresovich S, Matsuoka Y, Doebley J (2002) Identifying genes of agronomic importance in maize by screening microsatellites for evidence of selection during domestication. Proc Natl Acad Sci USA 99:9650–9655

    Article  PubMed  CAS  Google Scholar 

  • Wahls WP, Wallace LJ, Moore P (1990) The Z-DNA motif d(TG)30 promotes reception of information during gene conversion events while stimulating homologous recombination in human cells in culture. Mol Cell Biol 10:785–793

    PubMed  CAS  Google Scholar 

  • Ware D, Jaiswal P, Ni J, Pan X, Chang K, Clark K, Teytelman L, Schmidt S, Zhao W, Cartinhour S, McCouch S, Stein L (2002) Gramene: a resource for comparative grass genomics. Nucleic Acids Res 30:103–105

    Article  PubMed  CAS  Google Scholar 

  • Webster MT, Smith NGC, Ellegren H (2002) Microsatellite evolution inferred from human-chimpanzee genomic sequence alignments. Proc Natl Acad Sci USA 99:8748–8753

    Article  PubMed  CAS  Google Scholar 

  • Weising K, Nybom H, Wolff K, Kahl G (2005) DNA fingerprinting in plants. Principles, methods and applications. 2nd edn. CRC Press, Taylor & Francis Group, Boca Raton

    Google Scholar 

  • Wierdl M, Dominska M, Petes TD (1997) Microsatellite instability in yeast: dependence on the length of the microsatellite. Genetics 140:769–779

    Google Scholar 

  • Xu G, Goodridge AG (1998) A CT repeat in the promoter of the chicken malic enzyme gene is essential for function at an alternative transcription start site. Arch Biochem Biophys 358:83–91

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, Cao M, Liu J, Sun J, Tang J, Chen Y, Huang X, Lin W, Ye C, Tong W, Cong L, Geng J, Han Y, Li L, Li W, Hu G, Huang X, Li W, Li J, Liu Z, Li L, Liu J, Qi Q, Liu J, Li L, Li T, Wang X, Lu H, Wu T, Zhu M, Ni P, Han H, Dong W, Ren X, Feng X, Cui P, Li X, Wang H, Xu X, Zhai W, Xu Z, Zhang J, He S, Zhang J, Xu J, Zhang K, Zheng X, Dong J, Zeng W, Tao L, Ye J, Tan J, Ren X, Chen X, He J, Liu D, Tian W, Tian C, Xia H, Bao Q, Li G, Gao H, Cao T, Wang J, Zhao W, Li P, Chen W, Wang X, Zhang Y, Hu J, Wang J, Liu S, Yang J, Zhang G, Xiong Y, Li Z, Mao L, Zhou C, Zhu Z, Chen R, Hao B, Zheng W, Chen S, Guo W, Li G, Liu S, Tao M, Wang J, Zhu L, Yuan L, Yang H (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Wang J, Lin W, Li S, Li H, Zhou J, Ni P, Dong W, Hu S, Zeng C, Zhang J, Zhang Y, Li R, Xu Z, Li S, Li X, Zheng H, Cong L, Lin L, Yin J, Geng J, Li G, Shi J, Liu J, Lv H, Li J, Wang J, Deng Y, Ran L, Shi X, Wang X, Wu Q, Li C, Ren X, Wang J, Wang X, Li D, Liu D, Zhang X, Ji Z, Zhao W, Sun Y, Zhang Z, Bao J, Han Y, Dong L, Ji J, Chen P, Wu S, Liu J, Xiao Y, Bu D, Tan J, Yang L, Ye C, Zhang J, Xu J, Zhou Y, Yu Y, Zhang B, Zhuang S, Wei H, Liu B, Lei M, Yu H, Li Y, Xu H, Wei S, He X, Fang L, Zhang Z, Zhang Y, Huang X, Su Z, Tong W, Li J, Tong Z, Li S, Ye J, Wang L, Fang L, Lei T, Chen C, Chen H, Xu Z, Huang H, Zhang F, Xu H, Li N, Zhao C, Li S, Dong L, Huang Y, Li L, Xi Y, Qi Q, Li W, Zhang B, Hu W, Zhang Y, Tian X, Jiao Y, Liang X, Jin J, Gao L, Zheng W, Hao B, Liu S, Wang W, Yuan L, Cao M, McDermott J, Samudrala R, Wang J, Wong GK-S, Yang H (2005) The genomes of Oryza sativa: a history of duplications. PLoS Biol 3:266–281

    Article  CAS  Google Scholar 

  • Zhao X, Kochert G (1993) Phylogenetic distribution and genetic mapping of a (GGC)n microsatellite from rice (Oryza sativa L.). Plant Mol Biol 21:607–614

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Authors express their sincere thanks to Prof. Kurt Weising, University of Kassel, Germany, for critically reviewing the manuscript and extending helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. C. Sharma.

Additional information

Communicated by W.R. McCombie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grover, A., Aishwarya, V. & Sharma, P.C. Biased distribution of microsatellite motifs in the rice genome. Mol Genet Genomics 277, 469–480 (2007). https://doi.org/10.1007/s00438-006-0204-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-006-0204-y

Keywords

Navigation