Skip to main content
Log in

MNU-induced mutant pools and high performance TILLING enable finding of any gene mutation in rice

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Mutant populations are indispensable genetic resources for functional genomics in all organisms. However, suitable rice mutant populations, induced either by chemicals or irradiation still have been rarely developed to date. To produce mutant pools and to launch a search system for rice gene mutations, we developed mutant populations of Oryza sativa japonica cv. Taichung 65, by treating single zygotic cells with N-methyl-N-nitrosourea (MNU). Mutagenesis in single zygotes can create mutations at a high frequency and rarely forms chimeric plants. A modified TILLING system using non-labeled primers and fast capillary gel electrophoresis was applied for high-throughput detection of single nucleotide substitution mutations. The mutation rate of an M2 mutant population was calculated as 7.4 × 10−6 per nucleotide representing one mutation in every 135 kb genome sequence. One can expect 7.4 single nucleotide substitution mutations in every 1 kb of gene region when using 1,000 M2 mutant lines. The mutations were very evenly distributed over the regions examined. These results indicate that our rice mutant population generated by MNU-mutagenesis could be a promising resource for identifying mutations in any gene of rice. The modified TILLING method also proved very efficient and convenient in screening the mutant population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • An G, Jeong DH, Jung KH, Lee S (2005a) Reverse genetic approaches for functional genomics of rice. Plant Mol Biol 59:111–123

    Article  PubMed  CAS  Google Scholar 

  • An G, Lee S, Kim S-H, Kim S-R (2005b) Molecular genetics using T-DNA in rice. Plant Cell Physiol 46:14–22

    Article  PubMed  CAS  Google Scholar 

  • Caldwell DG, McCallum N, Shaw P, Muehlbauer GJ, Marshall DF, Waugh R (2004) A structured mutant population for forward and reverse genetics in Barley (Hordeum vulgare L.). Plant J 40:143–150

    Article  PubMed  CAS  Google Scholar 

  • Droc G, Ruiz M, Larmand P, Pereira A, Piffanelli P, Morel JB, Dievart A, Courtois B, Guiderdoni E, Perin C (2006) OryGenesDB: a database for rice reverse genetics. Nucleic Acids Res 34:D736–D740

    Article  PubMed  CAS  Google Scholar 

  • Gilchrist EJ, Haughn GW (2005) TILLING without a plough: a new method with applications for reverse genetics. Curr Opin Plant Biol 8:211–215

    Article  PubMed  CAS  Google Scholar 

  • Greene EA, Codoma CA, Taylar NF, Henikoff JG, Till BJ, Reynold SH, Enns LC, Burtner C, Johnson JE, Odden AR, Comai L, Henikoff S (2003) Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis. Genetics 164:731–740

    PubMed  CAS  Google Scholar 

  • Haughn GW, Gilchrist EJ (2006) TILLING in the botanical garden: a reverse genetic technique feasible for all plant species. In: Teixeira da Silva JA (ed) Floriculture, ornamental and plant biotechnology: advances and topical issues, vol 1. Global science books, London, pp 476–482

    Google Scholar 

  • Henikoff S, Till BJ, Comai L (2004) TILLING. Traditional mutagenesis meets functional genomics. Plant Physiol 135:630–636

    Article  PubMed  CAS  Google Scholar 

  • Hoshikawa K (1993) Anthesis, fertilization and development of caryopsis. In: Matsuo T, Hoshikawa K (eds) Science of the rice plant, vol 1: morphology. Nosan Gyoson Bunka Kyokai, Tokyo, pp 339–376

  • Jansen JG, Mohn GR, Vrieling H, van Teijlingen CM, Lohman PH, van Zeeland AA (1994) Molecular analysis of hprt gene mutations in skin fibroblasts of rats exposed in vivo to N-methyl-N-nitrosourea or N-ethyl-N-nitrosourea. Cancer Res 54:2478–2485

    PubMed  CAS  Google Scholar 

  • Jeong DH, An S, Park S, Kang HG, Park GG, Kim SR, Sim J, Kim YO, Kim MK, Kim SR, Kim J, Shin M, Jung M, An G (2006) Generation of a flanking sequence-tag database for activation-tagging lines in japonica rice. Plant J 45:123–132

    Article  PubMed  CAS  Google Scholar 

  • Kim CM, Piao HL, Park SJ, Chon NS, Je BI, Sun B, Park SH, Park JY, Lee EJ, Kim MJ, Chung WS, Lee KH, Lee YS, Lee JJ, Won YJ, Yi GH, Nam MH, Cha YS, Yun DW, Eun MY, Han C (2004) Rapid, large-scale generation of Ds transposant lines and analysis of the Ds insertion sites in rice. Plant J 39:252–263

    Article  PubMed  CAS  Google Scholar 

  • Kolesnik T, Szeverenyi I, Bachmann D, Kumar CS, Jiang S, Ramamoorthy R, Cai M, Ma ZG, Sundaresan V, Ramachandran S (2004) Establishing an efficient Ac/Ds tagging system in rice: large-scale analysis of Ds flanking sequences. Plant J 37:301–314

    PubMed  CAS  Google Scholar 

  • Kumamaru T, Satoh H, Iwata N, Omura T, Ogawa M, Tanaka K (1988) Mutants for rice storage proteins. 1. Screening of mutants for rice storage protein bodies in the starchy endosperm. Theor Appl Genet 76:11–16

    Article  CAS  Google Scholar 

  • Kurata N, Miyoshi K, Nonomura K-I, Yamazaki Y, Ito Y (2005) Rice mutants and genes related to organ development, morphogenesis and physiological traits. Plant Cell Physiol 46:48–62

    Article  PubMed  CAS  Google Scholar 

  • Liu MS, Amirkhanian VD (2003) DNA fragment analysis by an affordable multiple-channel capillary electrophoresis system. Electrophoresis 24:93–95

    Article  PubMed  Google Scholar 

  • Machida C, Onouchi H, Koizumi J, Hamada S, Semiarti E, Torikai S, Machida Y (1997) Characterization of the transposition pattern of the Ac element in Arabidopsis thaliana using endonuclease I-SceI. Proc Natl Acad Sci 94:8675–8680

    Article  PubMed  CAS  Google Scholar 

  • Miyao A, Tanaka K, Murata K, Sawaki H, Takeda S, Abe K, Shinozuka Y, Onosato K, Hirochika H (2003) Target site specificity of the Tos17 retrotransposon shows a preference for insertion within genes and against insertion in retrotransposon-rich regions of the genome. Plant Cell 15:1771–1780

    Article  PubMed  Google Scholar 

  • Miyoshi K, Ahn BO, Kawakatsu T, Ito Y, Itoh J-I, Nagato Y, Kurata N (2004) PLASTOCHRON1, a time keeper of leaf initiation in rice, encodes cytochrome P450. Proc Natl Acad Sci 101:875–880

    Article  PubMed  CAS  Google Scholar 

  • Moriguchi K, Suzuki T, Ito Y, Yamazaki Y, Niwa Y, Kurata N (2005) Functional isolation of novel nuclear proteins showing a variety of sub-nuclear localizations. Plant Cell 17:389–403

    Article  PubMed  CAS  Google Scholar 

  • Nakazaki T, Okumoto Y, Horibata A, Yamahira S, Teraishi M, Nishida H, Inoue H, Tanisaka T (2003) Mobilization of a transposon in the rice genome. Nature 421:170–172

    Article  PubMed  CAS  Google Scholar 

  • Oka HI (1975) Breeding for wide adaptability. In: Matsuo T (ed) Adaptability in plants. JIBP Synthesis 6:Univ Tokyo Press, Tokyo, pp 177–185

    Google Scholar 

  • Sallaud C, Gray C, Larmande P, Bes M, Piffanelli P, Piegu B, Droc G, Regad F, Bourgeois E, Meynard D, Perin C, Sabau X, Ghesquiere A, Glaszman JC, Delseny M, Guiderdoni E (2004) High throughut T-DNA insertion mutagenesis in rice: a first step towards in silico reverse genetics. Plant J 39:450–464

    Article  PubMed  CAS  Google Scholar 

  • Satoh H, Omura T (1979) Induction of mutation by the treatment of fertilized egg cell with N-methyl-N-nitrosourea in rice. J Fac Agr Kyushu Univ 24:165–174

    CAS  Google Scholar 

  • Satoh H, Omura T (1986) Mutagenesis in rice by treating fertilized egg cells with nitroso compounds. In: Rice Genetics. Proceedings of the International Rice Genetics Symposium. Agribookstore, Arlington, pp 707–717

  • Satoh H, Nishi A, Fujita N, Kubo A, Nakamura Y, Kawasaki T, Okita TW (2003) Isolation and characterization of starch mutants in rice. J Appl Glycosci 50:225–230

    CAS  Google Scholar 

  • Slade AJ, Fuerstenberg SI, Loeffler D, Steine MN, Facciotti D (2005) A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING. Nat Biotechnol 23:75–81

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Eiguchi M, Satoh H, Kumamaru T, Kurata N (2005) A modified TILLING system for rice mutant screening. Rice Genet Newsl 22:89–91

    Google Scholar 

  • Till BJ, Reynolds SH, Greene EA, Codomo CA, Enns LC, Johnson JE, Burtner C, Odden AR, Young K, Taylor NE, Henikoff JG, Comai L, Henikoff S (2003) Large-scale discovery of induced point mutations with high-throughput TILLING. Genome Res 13:524–530

    Article  PubMed  CAS  Google Scholar 

  • Till BJ, Reynolds SH, Weil C, Springer N, Burtner C, Young K, Bowers E, Codomo CA, Enns LC, Odden AR, Greene EA, Comai L, Henikoff S (2004) Discovery of induced point mutations in maize genes by TILLING. BMC Plant Biol 4:12. doi:10.1186/1471-2229-4-12

    Article  PubMed  Google Scholar 

  • Till BJ, Cooper J, Tai TH, Colowit P, Greene EA, Henikoff S, Comai L (2007) Discovery of chemically induced mutations in rice by TILLING. BMC Plant Biol 7:19

    Article  PubMed  Google Scholar 

  • Tsugane K, Maekawa M, Takagi K, Takahara H, Qian Q, Eun CH, Iida S (2006) An active DNA transposon nDart causing leaf variegation and mutable dwarfism and its related elements in rice. Plant J 45:46–57

    Article  PubMed  CAS  Google Scholar 

  • Wu C, Li X, Yuan W, Chen G, Killian A, Li J, Xu C, Li X, Zhou DX, Wang S, Zhang Q (2003) Development of enhancer trap lines for functional analysis of the rice genome. Plant J 35:418–427

    Article  PubMed  CAS  Google Scholar 

  • Wu J-L, Wu C, Lei C, Baraoidan M, Bordeos A, Madamba MRS, Ramos-Pamplona M, Mauleon R, Portugal A, Ulat VJ, Bruskiewich R, Wang G, Leach J, Khush G, Leung H (2005) Chemical- and irradiation-induced mutants of indica rice IR64 for forward and reverse genetics. Plant Mol Biol 59:85–97

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Drs. BJ, Till, L. Comai and S, Henikoff for their kind introduction of the original tilling method for us. We also thank Drs. M. Yano, Y. Nagamura, and H. Hirochika for their support to this work, and Ms. K. Sasaga for assistance. The appreciations are extended to Drs. Y. Harushima and S. Yamaki for fruitful discussion, and also to Drs. E. Gilchrist (University of British Columbia), M. Fujita and Mr. Thirumurugan for critical reading of this manuscript and providing helpful comments. This work was supported by a grant from the Ministry of Agriculture, Forestry and Fisheries of Japan (Green technology Project QT1004), and the National Bio-resource Project from the Ministry of Education, Sport, Culture and Technology (MEXT), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nori Kurata.

Additional information

Communicated by Masahiro Yano.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 1.83 Mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzuki, T., Eiguchi, M., Kumamaru, T. et al. MNU-induced mutant pools and high performance TILLING enable finding of any gene mutation in rice. Mol Genet Genomics 279, 213–223 (2008). https://doi.org/10.1007/s00438-007-0293-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-007-0293-2

Keywords

Navigation