Skip to main content
Log in

Endoplasmic reticulum stress activates the expression of a sub-group of protein disulfide isomerase genes and AtbZIP60 modulates the response in Arabidopsis thaliana

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Proteins entering the secretory pathway of eukaryotic cells are folded into their native structures in the endoplasmic reticulum (ER). Disruption of protein folding causes ER stress and activates signaling cascades, designated the unfolded protein response (UPR), that restore folding capacity. In mammals and yeast, the protein disulfide isomerases (PDIs) are key protein folding catalysts activated during UPR. However, little is known about the response of PDI genes to UPR in plants. In Arabidopsis thaliana, we identified 12 PDI genes that differed in polypeptide length, presence of signal peptide and ER retention signal, and the number and positions of thioredoxin and transmembrane domains. AtPDI gene expression was investigated in different tissues, in response to chemically induced UPR, and in null mutants of UPR signaling mediators (AtIRE1-2 and AtbZIP60). The expression of six AtPDI genes was significantly up-regulated by UPR and sharply attenuated by the transcription inhibitor, actinomycin D, indicating UPR induced AtPDI gene transcription. AtPDI and BIP2 (Binding protein) gene expression was not affected in the Atire1-2 mutant exposed to UPR, however, the expression of four AtPDI genes was decreased in the Atbzip60 mutant. We proposed that additional UPR signaling factors complement AtbZIP60 in the activation of AtPDI gene expression during ER stress in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Back SH, Schroder M, Lee K, Zhang K, Kaufman RJ (2005) ER stress signaling by regulated splicing: IRE1/HAC1/XBP1. Methods 35:395–416

    Article  PubMed  CAS  Google Scholar 

  • Bays NW, Gardner RG, Seelig LP, Joazeiro CA, Hampton RY (2001) Hrd1p/Der3p is a membrane-anchored ubiquitin ligase required for ER-associated degradation. Nat Cell Biol 3:24–29

    Article  PubMed  CAS  Google Scholar 

  • Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795

    Article  PubMed  Google Scholar 

  • Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D (2000) Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol 2:326–332

    Article  PubMed  CAS  Google Scholar 

  • Bertolotti A, Wang X, Novoa I, Jungreis R, Schlessinger K, Cho JH, West AB, Ron D (2001) Increased sensitivity to dextran sodium sulfate colitis in IRE1β-deficient mice. J Clin Invest 107:585–593

    Article  PubMed  CAS  Google Scholar 

  • Buchanan BB (1991) Regulation of CO2 assimilation in oxygenic photosynthesis: the ferredoxin/thioredoxin system. Arch Biochem Biophys 288:1–9

    Article  PubMed  CAS  Google Scholar 

  • Buchanan BB, Balmer Y (2005) REDOX REGULATION: a broadening horizon. Annu Rev Plant Biol 56:187–220

    Article  PubMed  CAS  Google Scholar 

  • Caramelo J, Castro O, Prat-Gay G, Parodi A (2004) The endoplasmic reticulum glucosyltransferase recognizes nearly native glycoprotein folding intermediates. J Biol Chem 279:46280–46285

    Article  PubMed  CAS  Google Scholar 

  • Chun L, Kawakami A, Christopher DA (2001) Phytochrome A mediates blue light and UV-A-dependent chloroplast gene transcription in green leaves. Plant Physiol 125:1957–1966

    Article  PubMed  CAS  Google Scholar 

  • Christopher DA, Mullet JE (1994) Separate photosensory pathways co-regulate blue light/ultraviolet-A-activated psbD-psbC transcription and light-induced D2 and CP43 degradation in barley (Hordeum vulgare) chloroplasts. Plant Physiol 104:1119–1129

    Article  PubMed  CAS  Google Scholar 

  • Darby NJ, Kemmink J, Creighton TE (1996) Identifying and characterizing a structural domain of protein disulfide isomerase. Biochemistry 35:10517–1052

    Article  PubMed  CAS  Google Scholar 

  • Dorner AJ, Wasley LC, Raney P, Haugejorden S, Green M, Kaufman RJ (1990) The stress response in Chinese hamster ovary cells. Regulation of ERp72 and protein disulfide isomerase expression and secretion. J Biol Chem 265:22029–22034

    PubMed  CAS  Google Scholar 

  • Edman JC, Ellis L, Blacher RW, Roth RA, Rutter WJ (1985) Sequence of protein disulphide isomerase and implications of its relationship to thioredoxin. Nature 317:267–270

    Article  PubMed  CAS  Google Scholar 

  • Galtier N, Gouy M, Gautier C (1996) SeaView and Phylo_win, two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 12:543–548

    PubMed  CAS  Google Scholar 

  • Gething MJ (1999) Role and regulation of the ER chaperone BiP. Semin Cell Dev Biol 10:465–472

    Article  PubMed  CAS  Google Scholar 

  • Gruber CW, Cemazar M, Heras B, Martin JL, Craik DJ (2006) Protein disulfide isomerase: the structure of oxidative folding. Trends Biochem Sci 31:455–464

    Article  PubMed  CAS  Google Scholar 

  • Harding HP, Zhang Y, Bertolotti A, Zeng H, Ron D (2000) Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell 5:897–904

    Article  PubMed  CAS  Google Scholar 

  • Harding HP, Calfon M, Urano F, Novoa I, Ron D (2002) Transcriptional and translational control in the Mammalian unfolded protein response. Annu Rev Cell Dev Biol 18:575–599

    Article  PubMed  CAS  Google Scholar 

  • Haugstetter J, Blicher T, Ellgaard L (2005) Identification and characterization of a novel thioredoxin-related transmembrane protein of the endoplasmic reticulum. J Biol Chem 280:8371–8380

    Article  PubMed  CAS  Google Scholar 

  • Hoffer PH, Christopher DA (1997) Structure and blue-light-responsive transcription of a chloroplast psbD promoter from Arabidopsis thaliana. Plant Physiol 115:213–222

    Article  PubMed  CAS  Google Scholar 

  • Houston NL, Fan C, Xiang JQ, Schulze JM, Jung R, Boston RS (2005) Phylogenetic analyses identify 10 classes of the protein disulfide isomerase family in plants, including single-domain protein disulfide isomerase-related proteins. Plant Physiol 137:762–778

    Article  PubMed  CAS  Google Scholar 

  • Iwata Y, Koizumi N (2005) An Arabidopsis transcription factor, AtbZIP60, regulates the endoplasmic reticulum stress response in a manner unique to plants. Proc Natl Acad Sci USA 102:5280–5285

    Article  PubMed  CAS  Google Scholar 

  • Jämsä E, Simonen M, Makarow M (1994) Selective retention of secretory proteins in the yeast endoplasmic reticulum by treatment of cells with a reducing agent. Yeast 10:355–370

    Article  PubMed  Google Scholar 

  • Kamauchi S, Nakatani H, Nakano C, Urade R (2005) Gene expression in response to endoplasmic reticulum stress in Arabidopsis thaliana. FEBS J 272:3461–3476

    Article  PubMed  CAS  Google Scholar 

  • Kanai S, Toh H, Hayano T, Kikuchi M (1998) Molecular evolution of the domain structures of protein disulfide isomerases. J Mol Evol 47:200–210

    Article  PubMed  CAS  Google Scholar 

  • Kanemoto S, Kondo S, Ogata M, Murakami T, Urano F, Imaizumi K (2005) XBP1 activates the transcription of its target genes via an ACGT core sequence under ER stress. Biochem Biophys Res Commun 331:1146–1153

    Article  PubMed  CAS  Google Scholar 

  • Koizumi N, Martinez IM, Kimata Y, Kohno K, Sano H, Chrispeels MJ (2001) Molecular characterization of two Arabidopsis Ire1 homologs, endoplasmic reticulum-located transmembrane protein kinases. Plant Physiol 127:949–962

    Article  PubMed  CAS  Google Scholar 

  • Kostova Z, Wolf DH (2003) For whom the bell tolls: protein quality control of the endoplasmic reticulum and the ubiquitin-proteasome connection. EMBO J 22:2309–2317

    Article  PubMed  CAS  Google Scholar 

  • Lee AH, Iwakoshi NN, Glimcher LH (2003) XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol Cell Biol 23:7448–7459

    Article  PubMed  CAS  Google Scholar 

  • Lee K, Tirasophon W, Shen X, Michalak M, Prywes R, Okada T, Yoshida H, Mori K, Kaufman RJ (2002) IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response. Genes Dev 16:452–466

    Article  PubMed  CAS  Google Scholar 

  • Lemaire SD, Miginiac-Maslow M (2004) The thioredoxin superfamily in Chlamydomonas reinhardtii. Photosynth Res 82:203–220

    Article  PubMed  CAS  Google Scholar 

  • Levitan A, Trebitsh T, Kiss V, Pereg Y, Dangoor I, Danon A (2005) Dual targeting of the protein disulfide isomerase RB60 to the chloroplast and the endoplasmic reticulum. Proc Natl Acad Sci USA 102:6225–6230

    Article  PubMed  CAS  Google Scholar 

  • Liu JX, Srivastava R, Che P, Howell SH (2007a) Salt stress responses in Arabidopsis utilize a signal transduction pathway related to endoplasmic reticulum stress signaling. Plant J 51:897–909

    Article  PubMed  CAS  Google Scholar 

  • Liu JX, Srivastava R, Che P, Howell SH (2007b) An endoplasmic reticulum stress response in Arabidopsis is mediated by proteolytic processing and nuclear relocation of a membrane-associated transcription factor, bZIP28. Plant Cell 19:4111–4119

    Article  PubMed  CAS  Google Scholar 

  • Lucero HA, Kaminer B (1999) The role of calcium on the activity of ER calcistorin/protein-disulfide isomerase and the significance of the C-terminal and its calcium binding. J Biol Chem 274:3243–3251

    Article  PubMed  CAS  Google Scholar 

  • Martinez IM, Chrispeels MJ (2003) Genomic analysis of the unfolded protein response in Arabidopsis shows its connection to important cellular processes. Plant Cell 15:561–576

    Article  PubMed  CAS  Google Scholar 

  • McArthur AG, Knodler LA, Silberman JD, Davids BJ, Gillin FD, Sogin ML (2001) The evolutionary origins of eukaryotic protein disulfide isomerase domains: new evidence from the Amitochondriate protist Giardia lamblia. Mol Biol Evol 18(8):1455–1463

    PubMed  CAS  Google Scholar 

  • Meiri E, Levitan A, Guo F, Christopher DA, Schaefer D, Zryd JP, Danon A (2002) Characterization of three PDI-like genes in Physcomitrella patens and construction of knock-out mutants. Mol Genet Genomics 267:231–240

    Article  PubMed  CAS  Google Scholar 

  • Mori K, Ogawa N, Kawahara T, Yanagi H, Yura T (2000) mRNA splicing-mediated C-terminal replacement of transcription factor Hac1p is required for efficient activation of the unfolded protein response. Proc Natl Acad Sci USA 97:4660–4665

    Article  PubMed  CAS  Google Scholar 

  • Noh SJ, Kwon CS, Chung WI (2002) Characterization of two homologs of Ire1p, a kinase/endoribonuclease in yeast, in Arabidopsis thaliana. Biochim Biophys Acta 1575:130–134

    PubMed  CAS  Google Scholar 

  • Noh SJ, Kwon CS, Oh DH, Moon JS, Chung WI (2003) Expression of an evolutionarily distinct novel BiP gene during the unfolded protein response in Arabidopsis thaliana. Gene 311:81–91

    Article  PubMed  CAS  Google Scholar 

  • Noiva R (1999) Protein disulfide isomerase: the multifunctional redox chaperone of the endoplasmic reticulum. Semin Cell Dev Biol 10:481–493

    Article  PubMed  CAS  Google Scholar 

  • Okushima Y, Koizumi N, Yamaguchi Y, Kimata Y, Kohno K, Sano H (2002) Isolation and characterization of a putative transducer of endoplasmic reticulum stress in Oryza sativa. Plant Cell Physiol 43:532–539

    Article  PubMed  CAS  Google Scholar 

  • Ron D (2002) Translational control in the endoplasmic reticulum stress response. J Clin Invest 110:1383–1388

    PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1997) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    Google Scholar 

  • Takatsuki A, Arima K, Tamura G (1971) Tunicamycin, a new antibiotic. I. Isolation and characterization of tunicamycin. J Antibiot (Tokyo) 24:215–223

    CAS  Google Scholar 

  • Tasanen K, Parkkonen T, Chow LT, Kivirikko KI, Pihlajaniemi T (1998) Characterization of the human gene for a polypeptide that acts both as the beta subunit of prolyl 4-hydroxylase and as protein disulfide isomerase. J Biol Chem 263:16218–16224

    Google Scholar 

  • Travers KJ, Patil CK, Wodicka L, Lockhart DJ, Weissman JS, Walter P (2000) Functional and genomic analyses reveal essential coordination between the unfolded protein response and ER-associated degradation. Cell 101:249–258

    Article  PubMed  CAS  Google Scholar 

  • Trombetta ES, Parodi AJ (2003) Quality control and protein folding in the secretory pathway. Annu Rev Cell Dev Biol 19:649–676

    Article  PubMed  CAS  Google Scholar 

  • Urano F, Bertolotti A, Ron D (2000a) IRE1 and efferent signaling from the endoplasmic reticulum. J Cell Sci 113:3697–3702

    PubMed  CAS  Google Scholar 

  • Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, Harding HP, Ron D (2000b) Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287:664–666

    Article  PubMed  CAS  Google Scholar 

  • Vincent MJ, Martin AS, Compans RW (1998) Function of the KKXX motif in endoplasmic reticulum retrieval of a transmembrane protein depends on the length and structure of the cytoplasmic domain. J Biol Chem 273:950–956

    Article  PubMed  CAS  Google Scholar 

  • Wadahama H, Kamauchi S, Ishimoto M, Kawada T, Urade R (2007) Protein disulfide isomerase family proteins involved in soybean protein biogenesis. FEBS J 274:687–703

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson B, Gilbert HF (2004) Protein disulfide isomerase. Biochim Biophys Acta 1699:35–44

    PubMed  CAS  Google Scholar 

  • Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K (2001) XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107:881–891

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Science Foundation grant (MCB-0348028) to DAC. We thank Yanxin Shen for her invaluable assistance during the start of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Ping Lu.

Additional information

Communicated by A. Tyagi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Fig. 1 (PDF 109 kb)

Supplemental Fig. 2 (PDF 203 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, DP., Christopher, D.A. Endoplasmic reticulum stress activates the expression of a sub-group of protein disulfide isomerase genes and AtbZIP60 modulates the response in Arabidopsis thaliana . Mol Genet Genomics 280, 199–210 (2008). https://doi.org/10.1007/s00438-008-0356-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-008-0356-z

Keywords

Navigation