Skip to main content
Log in

KT/HAK/KUP potassium transporters gene family and their whole-life cycle expression profile in rice (Oryza sativa)

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

KT/HAK/KUP potassium transporter protein-encoding genes constitute a large family in the plant kingdom. The KT/HAK/KUP family is important for various physiological processes of plant life. In this study, we identified 27 potential KT/HAK/KUP family genes in rice (Oryza sativa) by database searching. Analysis of these KT/HAK/KUP family members identified three conserved motifs with unknown functions, and 11–15 trans-membrane segments, most of which are conserved. A total of 144 putative cis-elements were found in the 2 kb upstream region of these genes, of which a Ca2+-responsive cis-element, two light-responsive cis-elements, and a circadian-regulated cis-element were identified in the majority of the members, suggesting regulation of these genes by these signals. A comprehensive expression analysis of these genes was performed using data from microarrays hybridized with RNA samples of 27 tissues covering the entire life cycle from three rice genotypes, Minghui 63, Zhenshan 97, and Shanyou 63. We identified preferential expression of two OsHAK genes in stamen at 1 day before flowering compared with all the other tissues. OsHAK genes were also found to be differentially upregulated or downregulated in rice seedlings subjected to treatments with three hormones. These results would be very useful for elucidating the roles of these genes in growth, development, and stress response of the rice plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ahn SJ, Shin R, Schachtman DP (2004) Expression of KT/KUP genes in Arabidopsis and the role of root hairs in K uptake. Plant Physiol 134:1135–1145

    Article  PubMed  CAS  Google Scholar 

  • Amrutha RN, Sekhar PN, Varshney RK, Kishor PBK (2007) Genome-wide analysis and identification of genes related to potassium transporter families in rice (Oryza sativa L.). Plant Sci 172:708–721

    Article  CAS  Google Scholar 

  • Ashley MK, Grant M, Grabov A (2006) Plant responses to potassium deficiencies: a role for potassium transport proteins. J Exp Bot 57:425–436

    Article  PubMed  CAS  Google Scholar 

  • Bailey TL, Elkan C (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 2:28–36

    PubMed  CAS  Google Scholar 

  • Banerjee N, Zhang MQ (2002) Functional genomics as applied to mapping transcription regulatory networks. Curr Opin Microbiol 5:313–317

    Article  PubMed  CAS  Google Scholar 

  • Banuelos MA, Garciadeblas B, Cubero B, Rodriguez-Navarro A (2002) Inventory and functional characterization of the HAK potassium transporters of rice. Plant Physiol 130:784–795

    Article  PubMed  Google Scholar 

  • Brown CD, Johnson DS, Sidow A (2007) Functional architecture and evolution of transcriptional elements that drive gene coexpression. Science 317:1557–1560

    Article  PubMed  CAS  Google Scholar 

  • Czempinski K, Zimmermann S, Ehrhardt T, Muller-Rober B (1997) New structure and function in plant K+ channels: KCO1, an outward rectifier with a steep Ca2+ dependency. EMBO J 16:2565–2575

    Article  PubMed  CAS  Google Scholar 

  • Davies C, Shin R, Liu W, Thomas MR, Schachtman DP (2006) Transporters expressed during grape berry (Vitis vinifera L.) development are associated with an increase in berry size and berry potassium accumulation. J Exp Bot 57:3209–3216

    Article  PubMed  CAS  Google Scholar 

  • Deeken R, Sanders C, Ache P, Hedrich R (2000) Developmental and light-dependent regulation of a phloem-localised K+ channel of Arabidopsis thaliana. Plant J 23:285–290

    Article  PubMed  CAS  Google Scholar 

  • Desbrosses G, Kopka C, Ott T, Udvardi MK (2004) Lotus japonicus LjKUP is induced late during nodule development and encodes a potassium transporter of the plasma membrane. Mol Plant Microbe Interact 17:789–797

    Article  PubMed  CAS  Google Scholar 

  • Elumalai RP, Nagpal P, Reed JW (2002) A mutation in the Arabidopsis KT2/KUP2 potassium transporter gene affects shoot cell expansion. Plant Cell 14:119–131

    Article  PubMed  CAS  Google Scholar 

  • Epstein E, Rains DW, Elzam OE (1961) Resolution of dual mechanisms of potassium absorption by barley roots. Proc Natl Acad Sci USA 49:684–692

    Article  Google Scholar 

  • Fairley-Grenot KA, Assmann SM (1992) Whole-cell K+ current across the plasma membrane of guard cells from a grass: Zea mays. Planta 186:282–293

    Article  CAS  Google Scholar 

  • Fischer RA (1971) Role of potassium in stomatal opening in the leaf of Vicia faba. Plant Physiol 47:555–558

    Article  PubMed  CAS  Google Scholar 

  • Fromm J, Spanswick R (1993) Characteristics of action potentials in Willow (Salix viminalis L.). J Exp Bot 44:1119–1125

    Article  Google Scholar 

  • Fu H-H, Luan S (1998) AtKUP1: a dual-affinity K+ transporter from Arabidopsis. Plant Cell 10:63–74

    Article  PubMed  CAS  Google Scholar 

  • Garciadeblas B, Benito B, Rodriguez-Navarro A (2002) Molecular cloning and functional expression in bacteria of the potassium transporters CnHAK1 and CnHAK2 of the seagrass Cymodocea nodosa. Plant Mol Biol 50:623–633

    Article  PubMed  CAS  Google Scholar 

  • Gierth M, Maser P, Schroeder JI (2005) The potassium transporter AtHAK5 functions in K+ deprivation-induced high-affinity K+ uptake and AKT1 K+ channel contribution to K+ uptake kinetics in Arabidopsis roots. Plant Physiol 137:1105–1114

    Article  PubMed  CAS  Google Scholar 

  • Grabov A (2007) Plant KT/KUP/HAK potassium transporters: single family—multiple functions. Ann Bot 99:1035–1041

    Article  PubMed  CAS  Google Scholar 

  • Guo AY, Zhu QH, Chen X, Luo JC (2007) GSDS: a gene structure display server. Yi Chuan 29:1023–1026

    PubMed  CAS  Google Scholar 

  • Herde O, Pena-Cortes H, Willmitzer L, Fisahn J (1998) Remote stimulation by heat induces characteristic membrane-potential responses in the veins of wild-type and abscisic acid-deficient tomato plants. Planta 206:146–153

    Article  CAS  Google Scholar 

  • Heslop-Harrison Y, Heslop-Harrison JS (1996) Lodicule function and filament extension in the grasses: potassium ion movement and tissue specialization. Ann Bot 77:573–582

    Article  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297–300

    Article  PubMed  CAS  Google Scholar 

  • Jaquinod M, Villiers F, Kieffer-Jaquinod S, Hugouvieux V, Bruley C, Garin J, Bourguignon J (2007) A proteomics dissection of Arabidopsis thaliana vacuoles isolated from cell culture. Mol Cell Proteomics 6:394

    PubMed  CAS  Google Scholar 

  • Kaplan B, Davydov O, Knight H, Galon Y, Knight MR, Fluhr R, Fromm H (2006) Rapid transcriptome changes induced by cytosolic Ca2+ transients reveal ABRE-related sequence as Ca2+-responsive cis-elements in Arabidopsis. Plant Cell 18:2733–2748

    Article  PubMed  CAS  Google Scholar 

  • Kim EJ, Kwak JM, Uozumi N, Schroeder JI (1998) AtKUP1: an Arabidopsis gene encoding high-affinity potassium transport activity. Plant Cell 10:51–62

    Article  PubMed  CAS  Google Scholar 

  • Kleffmann T, Russenberger D, von Zychlinski A, Christopher W, Sjolander K, Gruissem W, Baginsky S (2004) The Arabidopsis thaliana chloroplast proteome reveals pathway abundance and novel protein functions. Curr Biol 14:354–362

    Article  PubMed  CAS  Google Scholar 

  • Li W, Assmann SM (1993) Characterization of a G-protein-regulated outward K+ current in mesophyll cells of Vicia faba L. Proc Natl Acad Sci USA 90:262–266

    Article  PubMed  CAS  Google Scholar 

  • Maathuis FJM (2006) The role of monovalent cation transporters in plant responses to salinity. J Exp Bot 57:1137–1147

    Article  PubMed  CAS  Google Scholar 

  • Maathuis FJM, Sanders D (1994) Mechanism of high-affinity potassium uptake in roots of Arabidopsis thaliana. Proc Natl Acad Sci USA 91:9272–9276

    Article  PubMed  CAS  Google Scholar 

  • Maathuis FJM, Sanders D (1997) Regulation of K absorption in plant root cells by external K: interplay of different plasma membrane K transporters. J Exp Bot 48:451–458

    CAS  Google Scholar 

  • Martinez-Cordero M, Martinez V, Rubio F (2004) Cloning and functional characterization of the high-affinity K+ transporter HAK1 of pepper. Plant Mol Biol 56:413–421

    Article  PubMed  CAS  Google Scholar 

  • Maser P et al (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 126:1646–1667

    Article  PubMed  CAS  Google Scholar 

  • Moore R, Clark WD, Stern KR (1995) Botany. Wm. C. Brown Publishers, Boston

    Google Scholar 

  • Moshelion M, Becker D, Czempinski K, Mueller-Roeber B, Attali B, Hedrich R, Moran N (2002) Diurnal and circadian regulation of putative potassium channels in a leaf moving organ. Plant Physiol 128:634–642

    Article  PubMed  CAS  Google Scholar 

  • Nakamura M, Tsunoda T, Obokata J (2002) Photosynthesis nuclear genes generally lack TATA-boxes: a tobacco photosystem I gene responds to light through an initiator. Plant J 29:1–10

    Article  PubMed  CAS  Google Scholar 

  • Nieves-Cordones M, Martinez-Cordero MA, Martinez V, Rubio F (2007) An NH4 +-sensitive component dominates high-affinity K+ uptake in tomato plants. Plant Sci 172:273–280

    Article  CAS  Google Scholar 

  • Nuhse TS, Stensballe A, Jensen ON, Peck SC (2004) Phosphoproteomics of the Arabidopsis plasma membrane and a new phosphorylation site database. Plant Cell 16:2394–2405

    Article  PubMed  Google Scholar 

  • Pfluger R, Cassier A (1977) Influence of monovalent cations on photosynthetic CO2-fixation. In: International Potash Institute (ed) 13th colloquium of IPI. International Potash Institute, Horgen, pp 95–100

    Google Scholar 

  • Philippar K et al (1999) Auxin-induced K+ channel expression represents an essential step in coleoptile growth and gravitropism. Proc Natl Acad Sci USA 96:12186–12191

    Article  PubMed  CAS  Google Scholar 

  • Piechulla B, Merforth N, Rudolph B (1998) Identification of tomato Lhc promoter regions necessary for circadian expression. Plant Mol Biol 38:655–662

    Article  PubMed  CAS  Google Scholar 

  • Pilot G, Gaymard F, Mouline K, Cherel I, Sentenac H (2003) Regulated expression of Arabidopsis Shaker K+ channel genes involved in K+ uptake and distribution in the plant. Plant Mol Biol 51:773–787

    Article  PubMed  CAS  Google Scholar 

  • Qi Z, Hampton CR, Shin R, Barkla BJ, White PJ, Schachtman DP (2008) The high affinity K+ transporter AtHAK5 plays a physiological role in planta at very low K+ concentrations and provides a caesium uptake pathway in Arabidopsis. J Exp Bot 59:595–607

    Article  PubMed  CAS  Google Scholar 

  • Quintero FJ, Blatt MR (1997) A new family of K+ transporters from Arabidopsis that are conserved across phyla. FEBS Lett 415:206–211

    Article  PubMed  CAS  Google Scholar 

  • Rehman S, Rha ES, Ashraf M, Lee KJ, Yun SJ, Kwak YG, Yoo NH, Kim JK (2004) Does barley (Hordeum vulgare L.) pollen swell in fractions of a second? Plant Sci 167:137–142

    Article  CAS  Google Scholar 

  • Rigas S, Debrosses G, Haralampidis K, Vicente-Agullo F, Feldmann KA, Grabov A, Dolan L, Hatzopoulos P (2001) TRH1 encodes a potassium transporter required for tip growth in Arabidopsis root hairs. Plant Cell 13:139–151

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Navarro A (2000) Potassium transport in fungi and plants. Biochim Biophys Acta 1469:1–30

    PubMed  CAS  Google Scholar 

  • Rodriguez-Navarro A, Rubio F (2006) High-affinity potassium and sodium transport systems in plants. J Exp Bot 57:1149–1160

    Article  PubMed  CAS  Google Scholar 

  • Rubio F, Santa-Maria GE, Rodriguez-Navarro A (2000) Cloning of Arabidopsis and barley cDNAs encoding HAK potassium transporters in root and shoot cells. Plant Physiol 109:34–43

    Article  CAS  Google Scholar 

  • Santa-Maria GE, Rubio F, Dubcovsky J, Rodriguez-Navarro A (1997) The HAK1 gene of barley is a member of a large gene family and encodes a high-affinity potassium transporter. Plant Cell 9:2281–2289

    Article  PubMed  CAS  Google Scholar 

  • Scott RJ, Spielman M, Dickinson HG (2004) Stamen structure and function. Plant Cell 16:S46–S60

    Article  PubMed  CAS  Google Scholar 

  • Senn ME, Rubio F, Banuelos MA, Rodriguez-Navarro A (2001) Comparative functional features of plant potassium HvHAK1 and HvHAK2 transporters. J Biol Chem 276:44563–44569

    Article  PubMed  CAS  Google Scholar 

  • Stankovic B, Davies E (1997) Intercellular communication in plants: electrical stimulation of proteinase inhibitor gene expression in tomato. Planta 202:402–406

    Article  CAS  Google Scholar 

  • Stoeckel H, Takeda K (1995) Calcium-sensitivity of the plasmalemmal delayed rectifier potassium current suggests that calcium influx in pulvinar protoplasts from Mimosa pudica L. can be revealed by hyperpolarization. J Membr Biol 146:201–209

    PubMed  CAS  Google Scholar 

  • Su H, Golldack D, Zhao C, Bohnert HJ (2002) The expression of HAK-type K+-transporters is regulated in response to salinity stress in Mesembryanthemum crystallinum. Plant Physiol 129:1482–1493

    Article  PubMed  CAS  Google Scholar 

  • Takahashi R, Nishio T, Ichizen N, Takano T (2007) High-affinity K+ transporter PhaHAK5 is expressed only in salt-sensitive reed plants and shows Na+ permeability under NaCl stress. Plant Cell Rep 26:1673–1679

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) Mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596

    Article  PubMed  CAS  Google Scholar 

  • Thiel G, Weise R (1999) Auxin augments conductance of K+ inward rectifier in maize coleoptile protoplasts. Planta 208:38–45

    Article  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Van Steveninck RFM (1976) Effect of hormones and related substances on ion transport. In: Luttge U, Pitman MG (eds) Encyclopedia of plant physiology. Springer, Berlin, pp 307–342

    Google Scholar 

  • Vicente-Agullo F, Rigas S, Desbrosses G, Dolan L, Hatzopoulos P, Grabov A (2004) Potassium carrier TRH1 is required for auxin transport in Arabidopsis roots. Plant J 40:523–535

    Article  PubMed  CAS  Google Scholar 

  • von Gromoff ED, Schroda M, Oster U, Beck CF (2006) Identification of a plastid response element that acts as an enhancer within the Chlamydomonas HSP70A promoter. Nucleic Acids Res 34:4767–4779

    Article  CAS  Google Scholar 

  • Wagner E, Normann J, Albrechtová JTP, Walczysko P, Bonzon M, Greppin H (1998) Electrochemical-hydraulic signalling in photoperiodic control of flowering: is ‘florigen’ a frequency-coded electric signal? Flower Newsl 26:62–74

    Google Scholar 

  • Walker DJ, Leigh RA, Miller AJ (1996) Potassium homeostasis in vacuolate plant cells. Proc Natl Acad Sci USA 93:10510–10514

    Article  PubMed  CAS  Google Scholar 

  • Wang D, Pei K, Fu Y, Sun Z, Li S, Liu H, Tang K, Han B, Tao Y (2007) Genome-wide analysis of the auxin response factors (ARF) gene family in rice (Oryza sativa). Gene 394:13–24

    Article  PubMed  CAS  Google Scholar 

  • Wang YH, Garvin DF, Kochian LV (2002) Rapid induction of regulatory and transporter genes in response to phosphorus, potassium, and iron deficiencies in tomato roots: evidence for cross talk and root/rhizosphere-mediated signals. Plant Physiol 130:1361–1370

    Article  PubMed  CAS  Google Scholar 

  • Yu J et al (2005) The genomes of Oryza sativa: a history of duplications. PLoS Biol 3:e38

    Article  PubMed  CAS  Google Scholar 

  • Zhang Q (2007) Strategies for developing green super rice. Proc Natl Acad Sci USA 104:16402–16409

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported in part by grants from the National Basic Research Program of China (2005CB120905), the National Special Key Project of China on Functional Genomics of Major Plants and Animals, the National Natural Science Foundation of China, and the Cultivation Fund of the Key Scientific and Technical Innovation Project, Ministry of Education of China (NO 707045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingming Lian.

Additional information

Communicated by A. Tyagi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1 Protein architecture of OsHAK potassium transporters in rice (DOC 146 kb)

Supplementary Figure 2 Protein architecture of KT/HAK/KUP potassium transporters in Arabidopsis (DOC 82 kb)

438_2008_377_MOESM3_ESM.doc

Supplementary Figure 3 Genomic distribution of OsHAK genes on rice chromosomes. The arrows next to gene names show the direction of transcription. The chromosome numbers are indicated at the bottom of each bar (DOC 150 kb)

438_2008_377_MOESM4_ESM.xls

Supplementary Table S1 One hundread fouty-four putative cis-elements with more than 6 bp, identified in 27 OsHAK genes in rice by PLACE. Numbers 1, 2, 3… represents the repeats of cis-elements while 0 indicate the absence of that particular cis-element (XLS 42 kb)

438_2008_377_MOESM5_ESM.xls

Supplementary Table S2 Biological repeats of signal values of OsHAK genes in 27 tissues of three rice cultivars (MH, Minghui 63; SH, Shanyou 63; and ZH, Zhenshan 97). Alphabet A, B… denote number of repeats (XLS 108 kb)

438_2008_377_MOESM6_ESM.xls

Supplementary Table S3 Average signal values of OsHAK genes in 27 tissues of three rice cultivars (MH, Minghui 63; SH, Shanyou 63; and ZH, Zhenshan 97) (XLS 34 kb)

438_2008_377_MOESM7_ESM.xls

Supplementary Table S4 Biological repeats of signal values of OsHAK genes in seedling at trefoil stage (control) and under three different hormone (NAA, GA3, and KT) treatments conditions of three rice cultivars (MH, Minghui 63; SH, Shanyou 63; and ZH, Zhenshan 97) under hormonal treatments conditions. Alphabet A, B… denote number of repeats (XLS 30 kb)

438_2008_377_MOESM8_ESM.xls

Supplementary Table S5 Average signal values of OsHAK genes in seedling at trefoil stage (control) and under three different hormone (NAA, GA3, and KT) treatments conditions in 27 tissues of three rice cultivars (MH, Minghui 63; SH, Shanyou 63; and ZH, Zhenshan 97) (XLS 19 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, M., Qiu, X., Wang, L. et al. KT/HAK/KUP potassium transporters gene family and their whole-life cycle expression profile in rice (Oryza sativa). Mol Genet Genomics 280, 437–452 (2008). https://doi.org/10.1007/s00438-008-0377-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-008-0377-7

Keywords

Navigation