Skip to main content
Log in

RecQ and RecJ process blocked replication forks prior to the resumption of replication in UV-irradiated Escherichia coli

  • ORIGINAL PAPER
  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Abstract

The accurate recovery of replication following DNA damage and repair is critical for the maintenance of genomic integrity. In Escherichia coli, the recovery of replication following UV-induced DNA damage is dependent upon several proteins in the recF pathway, including RecF, RecO, and RecR. Two other recF pathway proteins, the RecQ helicase and the RecJ exonuclease, have been shown to affect the sites and frequencies at which illegitimate rearrangements occur following UV-induced DNA damage, suggesting that they also may function during the recovery of replication. We show here that RecQ and RecJ process the nascent DNA at blocked replication forks prior to the resumption of DNA synthesis. The processing involves selective degradation of the nascent lagging DNA strand and it requires both RecQ and RecJ. We suggest that this processing may serve to lengthen the substrate that can be recognized and stabilized by the RecA protein at the replication fork, thereby helping to ensure the accurate recovery of replication after the obstructing lesion has been repaired.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received: 1 June 1999 / Accepted: 28 July 1999

Rights and permissions

Reprints and permissions

About this article

Cite this article

Courcelle, J., Hanawalt, P. RecQ and RecJ process blocked replication forks prior to the resumption of replication in UV-irradiated Escherichia coli . Mol Gen Genet 262, 543–551 (1999). https://doi.org/10.1007/s004380051116

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s004380051116

Navigation