Skip to main content
Log in

Parents of children with autosomal recessive diseases are not always carriers of the respective mutant alleles

  • Review Article
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Classically, each parent of a child with an autosomal recessive disease has been considered to carry at least one copy of the abnormal allele. However, with the increasing ability to characterise the molecular basis of genetic diseases, several exceptions have been reported. The most frequent situation is that only one parent is a carrier of the mutation that is present in the patient in two copies either because of uniparental disomy or because of a de-novo mutation on the gene transmitted by the non-carrier parent. In order to give accurate genetic counselling, in particular when prenatal diagnosis is envisaged, molecular analysis of each of the parents of a child affected with an autosomal recessive disease must be routinely performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abramowicz MJ, Andrien M, Dupont E, Dorchy H, Parma J, Duprez L, Ledley FD, Courtens W, Vamos E (1994) Isodisomy of chromosome 6 in a newborn with methylmalonic acidemia and agenesis of pancreatic beta cells causing diabetes mellitus. J Clin Invest 94:418–421

    CAS  PubMed  Google Scholar 

  • Álvarez A, Castillo I del, Pera A, Villamar M, Moreno-Pelayo, MA, Rivera T, Solanellas J, Moreno F (2003) Uniparental disomy of chromosome 13q causing homozygosity for the 35delG mutation in the gene encoding connexin26 (GJB2) results in prelingual hearing impairment in two unrelated Spanish patient. J Med Genet 40:636–639

    Article  PubMed  Google Scholar 

  • Asanuma A, Ohura T, Ogawa E, Sato S, Igarashi Y, Matsubara Y, Iinuma K (1999) Molecular analysis of Japanese patients with steroid 21-hydroxylase deficiency. J Hum Genet 44:312–317

    Article  CAS  PubMed  Google Scholar 

  • Bachega TA, Billerbeck AE, Madureira G, Marcondes JA, Longui CA, Leite MV, Arnhold IJ, Mendonca BB (1998) Molecular genotyping in Brazilian patients with the classical and nonclassical forms of 21-hydroxylase deficiency. J Clin Endocrinol Metab 83:4416–4419

    CAS  PubMed  Google Scholar 

  • Badens C, Mattei MG, Imbert AM, Lapoumeroulie C, Martini N, Michel G, Lena-Russo D (2002) A novel mechanism for thalassaemia intermedia. Lancet 359:132–133

    Article  CAS  PubMed  Google Scholar 

  • Bakker B, Bikker H, Hennekam RC, Lommen EJ, Schipper MG, Vulsma T, Vijlder JJ de (2001) Maternal isodisomy for chromosome 2p causing severe congenital hypothyroidism. J Clin Endocrinol Metab 86:1164–1168

    Article  CAS  PubMed  Google Scholar 

  • Barbat B, Bogyo A, Raux-Demay MC, Kuttenn F, Boue J, Simon-Bouy B, Serre JL, Mornet E (1995) Screening of CYP21 gene mutations in 129 French patients affected by steroid 21-hydroxylase deficiency. Hum Mutat 5:126–130

    CAS  PubMed  Google Scholar 

  • Bartoloni L Blouin JL, Pan Y, Gehrig C, Maiti AK, Scamuffa N, Rossier C, Jorissen M, Armengot M, Meeks M, Mitchison HM, Chung EMK, Delozier-Blanchet CD, Craigen WJ, Antonarakis SE (2002) Mutations in the DNAH11 (axonemal heavy chain dynein type 11) gene cause one form of situs inversus totalis and most likely primary ciliary dyskinesia. Proc Natl Acad Sci USA 99:10282–10286

    Article  CAS  PubMed  Google Scholar 

  • Baumgartner-Parzer SM, Schulze E, Waldhausl W, Pauschenwein S, Rondot S, Nowotny P, Meyer K, Frisch H, Waldhauser F, Vierhapper H (2001) Mutational spectrum of the steroid 21-hydroxylase gene in Austria: identification of a novel missense mutation. J Clin Endocrinol Metab 86:4771–4775

    Article  CAS  PubMed  Google Scholar 

  • Beaudet AL, Perciaccante RG, Cutting GR (1991) Homozygous nonsense mutation causing cystic fibrosis with uniparental disomy. Am J Hum Genet 48:1213

    CAS  PubMed  Google Scholar 

  • Beldjord C, Henry I, Bennani C, Vanhaeke D, Labie D (1992) Uniparental disomy: a novel mechanism for thalassemia major. Blood 80:287–289

    CAS  PubMed  Google Scholar 

  • Benlian P, Foubert L, Gagne, Bernard L, De Gennes JL, Langlois S, Robinson W, Hayden M (1996) Complete paternal isodisomy for chromosome 8 unmasked by lipoprotein lipase deficiency. Am J Hum Genet 59:431–436

    CAS  PubMed  Google Scholar 

  • Brzustowicz LM, Allitto BA, Matseoane D, Theve R, Michaud L, Chatkupt S, Sugarman E, Penchaszadeh GK, Suslak L, Koenigsberger MR, et al (1994) Paternal isodisomy for chromosome 5 in a child with spinal muscular atrophy. Am J Hum Genet 54:482–488

    CAS  PubMed  Google Scholar 

  • Casals T, Ramos MD, Gimenez J, Nadal M, Nunes V, Estevill X (1998) Paternal origin of a de novo novel CFTR mutation (L1065R) causing cystic fibrosis. Hum Mutat (Supp1):S99–S102

    Google Scholar 

  • Chavez B, Valdez E, Vilchis F (2000) Uniparental disomy in steroid 5-alpha-reductase 2 deficiency. J Clin Endocrinol Metab 85:3147–3150

    Article  CAS  PubMed  Google Scholar 

  • Cremonesi L, Cainarca S, Rossi A, Padoan R, Ferrari M (1996) Detection of a de novo R1066H mutation in an Italian patient affected with cystic fibrosis. Hum Genet 98:119–121

    Article  CAS  PubMed  Google Scholar 

  • Crow JF (1995) Spontaneous mutations as a risk factor. Exp Clin Immunogenet 12:121–128

    CAS  PubMed  Google Scholar 

  • Crow JF (2003) Development. There’s something curious about paternal-age effects. Science 301:606–607

    Article  CAS  PubMed  Google Scholar 

  • Dain LB, Buzzalino ND, Oneto A, Belli S, Stivel M, Pasqualini T, Minutolo C, Charreau EH, Alba LG (2002) Classical and nonclassical 21-hydroxylase deficiency: a molecular study of Argentine patients. Clin Endocrinol (Oxford) 56:239–245

    Google Scholar 

  • Delague V, Souraty N, Khallouf E, Tardy V, Chouery E, Halaby G, Loiselet J, Morel Y, Megarbane A (2000) Mutational analysis in Lebanese patients with congenital adrenal hyperplasia due to a deficit in 21-hydroxylase. Horm Res 53:77–82

    Article  CAS  Google Scholar 

  • Dolzan V, Stopar-Obreza M, Zerjav-Tansek M, Breskvar K, Krzisnik C, Battelino T (2003) Mutational spectrum of congenital adrenal hyperplasia in Slovenian patients: a novel Ala15Thr mutation and Pro30Leu within a larger gene conversion associated with a severe form of the disease. Eur J Endocrinol 149:137–144

    CAS  PubMed  Google Scholar 

  • Dufourcq-Lagelouse R, Lambert N, Duval M, Viot G, Vilmer E, Fischer A, Prieur M, de Saint Basile G (1999) Chediak-Higashi syndrome associated with maternal uniparental isodisomy of chromosome 1. Eur J Hum Genet 7:633–637

    Google Scholar 

  • Engel E (1980) A new genetic concept: uniparental disomy and its potential effect, isodisomy. Am J Med Genet 6:137–143

    CAS  PubMed  Google Scholar 

  • Engel E (1998) Uniparental disomies in unselected populations. Am J Hum Genet 63:962–966

    CAS  PubMed  Google Scholar 

  • Gelb BD, Willner JP, Dunn TM, Kardon NB, Verloes A, Poncin J, Desnick RJ (1998) Paternal uniparental disomy for chromosome 1 revealed by molecular analysis of a patient with pycnodysostosis. Am J Hum Genet 62:848–854

    CAS  PubMed  Google Scholar 

  • Hehr U, Dorr S, Hagemann M, Hansmann I, Preiss U, Bromme S (2000) Silver-Russell syndrome and cystic fibrosis associated with maternal uniparental disomy 7. Am J Med Genet 91:237–239

    Article  CAS  PubMed  Google Scholar 

  • Hoglund P, Holmberg C, Chapelle A de la, Kere J (1994) Paternal isodisomy for chromosome 7 is compatible with normal growth and development in a patient with congenital chloride diarrhea. Am J Hum Genet 55:747–752

    CAS  PubMed  Google Scholar 

  • Indo Y, Mardy S, Miura Y, Moosa A, Ismail ERA, Toscano E, Andria G, Pavone V, Brown DL, Brooks A, Endo F, Matsuda I (2001) Congenital insensitivity to pain with anhidrosis (CIPA): novel mutations of the TRKA (NTRK1) gene, a putative uniparental disomy, and a linkage of the mutant TRKA and PKLR genes in a family with CIPA and pyruvate kinase deficiency. Hum Mut 18:308–318

    Article  CAS  PubMed  Google Scholar 

  • Jin Y, Dietz HC, Montgomery RA, Bell WR, McIntosh I, Coller B, Bray PF (1996) Glanzmann thrombasthenia. Cooperation between sequence variants in cis during splice site selection. J Clin Invest 98:1745–1754

    CAS  PubMed  Google Scholar 

  • Kotzot D (1999) Abnormal phenotypes in uniparental disomy (UPD): fundamental aspects and a critical review with bibliography of UPD other than 15. Am J Med Genet 82:265–74

    CAS  PubMed  Google Scholar 

  • Krone N, Braun A, Roscher AA, Knorr D, Schwarz HP (2000) Predicting phenotype in steroid 21-hydroxylase deficiency? Comprehensive genotyping in 155 unrelated, well defined patients from southern Germany. J Clin Endocrinol Metab 85:1059–1065

    CAS  PubMed  Google Scholar 

  • Lebo RV, Shapiro LR, Fenerci EY, Hoover JM, Chuang JL, Chuang DT, Kronn DF (2000) Rare etiology of autosomal recessive disease in a child with non-carrier parents. Am J Hum Genet 67:750–754

    Article  CAS  PubMed  Google Scholar 

  • Lefebvre S, Burglen L, Frezal J, Munnich A, Melki J (1998) The role of the SMN gene in proximal spinal muscular atrophy. Hum Mol Genet 7:1531–1536

    CAS  PubMed  Google Scholar 

  • Levo A, Partanen J (2001) Novel mutations in the hyman CYP21 gene. Prenatal Diagn 21:8850–8889

    Google Scholar 

  • Lobato MN, Ordonez-Sanchez ML, Tusie-Luna MT, Meseguer A (1999) Mutation analysis in patients with congenital adrenal hyperplasia in the Spanish population: identification of putative novel steroid 21-hydroxylase deficiency alleles associated with the classic form of the disease. Hum Hered 49:169–175

    CAS  PubMed  Google Scholar 

  • Lopez-Gutierrez AU, Riba L, Ordonez-Sanchez ML, Ramirez-Jimenez S, Cerrillo-Hinojosa M, Tusie-Luna MT (1998) Uniparental disomy for chromosome 6 results in steroid 21-hydroxylase deficiency: evidence of different genetic mechanisms involved in the production of the disease. J Med Genet 35:1014–1019

    CAS  PubMed  Google Scholar 

  • Miura Y, Hiura M, Torigoe K, Numata O, Kuwahara A, Matsunaga M, Hasegawa S, Boku N, Ino H, Mardy S, Endo F, Matsuda I, Indo Y (2000) Complete paternal uniparental isodisomy for chromosome 1 revealed by mutation analyses of the TRKA (NTRK1) gene encoding a receptor tyrosine kinase for nerve growth factor in a patient with congenital insensitivity to pain with anhidrosis. Hum Genet 107:205–209

    Article  CAS  PubMed  Google Scholar 

  • Ogino S, Leonard DG, Rennert H, Ewens WJ, Wilson RB (2002) Genetic risk assessment in carrier testing for spinal muscular atrophy. Am J Med Genet 110:301–307

    PubMed  Google Scholar 

  • Ohlsson G, Muller J, Skakkebaek NE, Schwartz M (1999) Steroid 21-hydroxylase deficiency: mutational spectrum in Denmark, three novel mutations, and in vitro expression analysis. Hum Mutat 13:482–486

    CAS  PubMed  Google Scholar 

  • Ordonez-Sanchez ML, Ramirez-Jimenez S, Lopez-Gutierrez AU, Riba L, Gamboa-Cardiel S, Cerrillo-Hinojosa M, Altamirano-Bustamante N, Calzada-Leon R, Robles-Valdes C, Mendoza-Morfin F, Tusie-Luna MT (1998) Molecular genetic analysis of patients carrying steroid 21-hydroxylase deficiency in the Mexican population: identification of possible new mutations and high prevalence of apparent germ-line mutations. Hum Genet 102:170–177

    PubMed  Google Scholar 

  • Pentao L, Lewis RA, Ledbetter DH, Patel PI, Lupski JR (1992) Maternal uniparental isodisomy of chromosome 14: association with autosomal recessive rod monochromacy. Am J Hum Genet 50:690–699

    CAS  PubMed  Google Scholar 

  • Pulkkinen L, Bullrich F, Czarnecki P, Weiss L, Uitto J (1997) Maternal uniparental disomy of chromosome 1 with reduction to homozygosity of the LAMB3 locus in a patient with Herlitz junctional epidermolysis bullosa. Am J Hum Genet 61:611–619

    CAS  PubMed  Google Scholar 

  • Rivolta C, Berson EL, Dryja TP (2002) Paternal uniparental heterodisomy with partial isodisomy of chromosome 1 in a patient with retinitis pigmentosa without hearing loss and a missense mutation in the Usher syndrome type II gene USH2A. Arch Ophthalmol 120:1566–1571

    CAS  PubMed  Google Scholar 

  • Speiser PW, Dupont J, Zhu D, Serrat J, Buegeleisen M, Tusie-Luna MT, Lesser M, New MI, White PC (1992) Disease expression and molecular genotype in congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J Clin Invest 90:584–595

    CAS  PubMed  Google Scholar 

  • Spence JE, Periccante RG, Greig GM, Willard HF, Ledbetter DH, Heitmancick, Pollack MS, O’Brien WE, Beaudet AL (1988) Uniparental disomy as a mechanism for human genetic disease. Am J Hum Genet 42:217–226

    CAS  PubMed  Google Scholar 

  • Spiekerkoetter U, Eeds A, Yue Z, Haines J, Strauss AW, Summar M (2002) Uniparental disomy of chromosome 2 resulting in lethal trifunctional protein deficiency due to homozygous alpha-subunit mutations. Hum Mutat 20:447–451

    Article  CAS  PubMed  Google Scholar 

  • Spiro RP, Christian SL, Ledbetter DH, New MI, Wilson RC, Roizen N, Rosenfield RL (1999) Intrauterine growth retardation associated with maternal uniparental disomy for chromosome 6 unmasked by congenital adrenal hyperplasia. Pediatr Res 46:510–513

    CAS  PubMed  Google Scholar 

  • Spotila LD, Sereda L, Prockop DJ (1992) Partial isodisomy for maternal chromosome 7 and short stature in an individual with a mutation at the COL1A2 locus. Am J Hum Genet 51:1396–1405

    CAS  PubMed  Google Scholar 

  • Stern C (1973) Principles of human genetics, 3rd edn. Freeman, San Francisco

  • Stikkelbroeck NM, Hoefsloot LH, Wijs IJ de, Otten BJ, Hermus AR, Sistermans EA (2003) CYP21 gene mutation analysis in 198 patients with 21-hydroxylase deficiency in The Netherlands: six novel mutations and a specific cluster of four mutations. J Clin Endocrinol Metab 88:3852–3859

    Article  CAS  PubMed  Google Scholar 

  • Sulisalo T, Makitie O, Sistonen P, Ridanpaa M, el-Rifai W, Ruuskanen O, Chapelle A de la, Kaitila I (1997) Uniparental disomy in cartilage-hair hypoplasia. Eur J Hum Genet 5:35–42

    CAS  Google Scholar 

  • Tajima T, Fujieda K, Nakae J, Mikami A, Cutler GB Jr (1998) Mutations of the CYP21 gene in nonclassical steroid 21-hydroxylase deficiency in Japan. Endocr J 45:493–497

    CAS  PubMed  Google Scholar 

  • Takizawa Y, Pulkkinen L, Chao SC, Nakajima H, Nakano Y, Shimizu H, Uitto J (2000) Mutation report: complete paternal uniparental isodisomy of chromosome 1: a novel mechanism for Herlitz junctional epidermolysis bullosa. J Invest Dermatol 115:307–311

    Google Scholar 

  • Thompson DA, McHenry CL, Li Y, Richards JE, Othman MI, Schwinger E, Vollrath D, Jacobson SG, Gal A (2002) Retinal dystrophy due to paternal isodisomy for chromosome 1 or chromosome 2, with homoallelism for mutations in RPE65 or MERTK, respectively. Am J Hum Genet 70:224–229

    Article  CAS  PubMed  Google Scholar 

  • Tiranti V, Lamantea E, Uziel G, Zeviani M, Gasparini P, Marzella R, Rocchi M, Fried M (1999) Leigh syndrome transmitted by uniparental disomy of chromosome 9. J Med Genet 36:927–928

    CAS  PubMed  Google Scholar 

  • Tusie-Luna MT, White PC (1995) Gene conversions and unequal crossovers between CYP21 (steroid 21-hydroxylase gene) and CYP21P involve different mechanisms. Proc Natl Acad Sci USA 92:10796–10800

    CAS  PubMed  Google Scholar 

  • Voss R, Ben-Simon E, Avital A, Godfrey S, Zlotogora J, Dagan J, Tikochinski Y, Hillel J (1989) Isodisomy of chromosome 7 in a patient with cystic fibrosis: could uniparental disomy be common in humans? Am J Hum Genet 45:373–380

    CAS  PubMed  Google Scholar 

  • Wedell A, Thilen A, Ritzen EM, Stengler B, Luthman H (1994) Mutational spectrum of the steroid 21-hydroxylase gene in Sweden: implications for genetic diagnosis and association with disease manifestation. J Clin Endocrinol Metab 78:1145–1152

    CAS  PubMed  Google Scholar 

  • Welch TR, Beischel LS, Choi E, Balakrishnan K, Bishof NA (1990) Uniparental isodisomy 6 associated with deficiency of the fourth component of complement. J Clin Invest 86:675–678

    CAS  PubMed  Google Scholar 

  • White MB, Leppert M, Nielsen D, Zielenski J, Gerrard B, Stewart C, Dean M (1991) A de novo cystic fibrosis mutation: CGA (Arg) to TGA (stop) at codon 851 of the CFTR gene. Genomics 11:778–779

    CAS  PubMed  Google Scholar 

  • White PC, Speiser PW (2000) Congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Endocr Rev 21:245–291

    CAS  PubMed  Google Scholar 

  • Wirth B, Schmidt T, Hahnen E, Rudnik-Schoneborn S, Krawczak M, Muller-Myhsok B, Schonling J, Zerres K (1997) De novo rearrangements found in 2% of index patients with spinal muscular atrophy: mutational mechanisms, parental origin, mutation rate, and implications for genetic counseling. Am J Hum Genet 61:1102–1111

    CAS  PubMed  Google Scholar 

  • Woodage T, Prasad M, Dixon JW, Selby RE, Romain DR, Columbano-Green LM, Graham D, Rogan PK, Seip JR, Smith A, et al (1994) Bloom syndrome and maternal uniparental disomy for chromosome 15. Am J Hum Genet 55:74–80

    CAS  PubMed  Google Scholar 

  • Yang XP, Inazu A, Yagi K, Kajinami K, Koizumi J, Mabuchi H (1999) Abetalipoproteinemia caused by maternal isodisomy of chromosome 4q containing an intron 9 splice acceptor mutation in the microsomal triglyceride transfer protein gene. Arterioscler Thromb Vasc Biol 19:1950–1955

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel Zlotogora.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zlotogora, J. Parents of children with autosomal recessive diseases are not always carriers of the respective mutant alleles. Hum Genet 114, 521–526 (2004). https://doi.org/10.1007/s00439-004-1105-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-004-1105-y

Keywords

Navigation