Skip to main content
Log in

Genetic analysis of candidate genes modifying the age-at-onset in Huntington’s disease

  • Original Investigations
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

The expansion of a polymorphic CAG repeat in the HD gene encoding huntingtin has been identified as the major cause of Huntington’s disease (HD) and determines 42–73% of the variance in the age-at-onset of the disease. Polymorphisms in huntingtin interacting or associated genes are thought to modify the course of the disease. To identify genetic modifiers influencing the age at disease onset, we searched for polymorphic markers in the GRIK2, TBP, BDNF, HIP1 and ZDHHC17 genes and analysed seven of them by association studies in 980 independent European HD patients. Screening for unknown sequence variations we found besides several silent variations three polymorphisms in the ZDHHC17 gene. These and polymorphisms in the GRIK2, TBP and BDNF genes were analysed with respect to their association with the HD age-at-onset. Although some of the factors have been defined as genetic modifier factors in previous studies, none of the genes encoding GRIK2, TBP, BDNF and ZDHHC17 could be identified as a genetic modifier for HD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alberch J, López M, Badenas C, Carrasco JL, Milà M, Muñoz E, Canals JM (2005) Association between BDNF Val66Met polymorphism and age at onset in Huntington disease. Neurology 65:964–965

    Article  PubMed  CAS  Google Scholar 

  • Andrew SE, Goldberg YP, Kremer B, Telenius H, Theilmann J, Adam S, Starr E, Squitieri F, Lin B, Kalchman MA, Graham RK, Hayden MR (1993) The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington’s disease. Nat Genet 4:398–403

    Article  PubMed  CAS  Google Scholar 

  • Arning L, Kraus PH, Valentin S, Saft C, Andrich J, Epplen JT (2005) NR2A and NR2B receptor gene variations modify age at onset in Huntington disease. Neurogenetics 6:25–28

    Article  PubMed  CAS  Google Scholar 

  • Brinkman RR, Mezei MM, Theilmann J, Almqvist E, Hayden MR (1997) The likelihood of being affected with Huntington disease by a particular age, for a specific CAG size. Am J Hum Genet 60:1202–1210

    PubMed  CAS  Google Scholar 

  • Chattopadhyay B, Ghosh S, Gangopadhyay PK, Das SK, Roy T, Sinha KK, Jha DK, Mukherjee SC, Chakraborty A, Singhal BS, Bhattacharya AK, Bhattacharyya NP (2003) Modulation of age-at-onset in Huntington’s disease and spinocerebellar ataxia type 2 patients originated from eastern India. Neurosci Lett 345:93–96

    Article  PubMed  CAS  Google Scholar 

  • den Dunnen JT, Antonarakis SE (2001) Nomenclature for the description of human sequence variations. Hum Genet 109:121–124

    Article  Google Scholar 

  • Djoussé L, Knowlton B, Hayden MR, Almqvist EW, Brinkman RR, Ross CA, Margolis RL, Rosenblatt A, Durr A, Dodé C, Morrison PJ, Novelletto A, Frontali M, Trent RJA, McCusker E, Gómez-Tortosa E, Cabrero DM, Jones R, Zanko A, Nance M, Abramson RK, Suchowersky O, Paulsen JS, Harrison MB, Yang Q, Cupples LA, Mysore J, Gusella JF, MacDonald ME, Myers RH (2004) Evidence for a modifier of onset age in Huntington disease linked to the HD gene in 4p16. Neurogenetics 5:109–114

    Article  PubMed  Google Scholar 

  • Egan MF, Kojima M, Callicott JH, Goldberg TE, Kolachana BS, Bertolino A, Zaitsev E, Gold B, Goldman D, Dean M, Lu B, Weinberger DR (2003) The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112:257–269

    Article  PubMed  CAS  Google Scholar 

  • Gervais FG, Singaraja R, Xanthoudakis S, Gutekunst CA, Leavitt BR, Metzler M, Hackam AS, Tam J, Vaillancourt JP, Houtzager V, Rasper DM, Roy S, Hayden MR, Nicholson DW (2002) Recruitment and activation of caspase-8 by the huntingtin-interacting protein Hip-1 and a novel partner Hippi. Nat Cell Biol 4:95–105

    Article  PubMed  CAS  Google Scholar 

  • Haigh B, Huq M, Hayden MR (accessed May 25, 2004) Huntington disease. In: Gene reviews [online]. Available at: http://www.geneclinics.org/servlet/access?id = 8888891&key = 28UhX7Ix0tj-L&gry = &fcn = y&fw = uoW9&filename = /profiles/huntington/index.html

  • Hockley E, Cordery PM, Woodman B, Mahal A, Dellen A, Blakemore C, Lewis CM, Hannan AJ, Bates GP (2002) Environmental enrichment slows disease progression in R6/2 Huntington’s disease mice. Ann Neurol 51:235–242

    Article  Google Scholar 

  • Holbert S, Denghien I, Kiechle T, Rosenblatt A, Wellington C, Hayden MR, Margolis RL, Ross CA, Dausset J, Ferrante RJ, Néri C (2001) The Gln-Ala repeat transcriptional activator CA150 interacts with huntingtin: neuropathologic and genetic evidence for a role in Huntington’s disease pathogenesis. Proc Natl Acad Sci USA 98:1811–1816

    Article  PubMed  CAS  Google Scholar 

  • Kehoe P, Krawczak M, Harper PS, Owen MJ, Jones AL (1999) Age of onset in Huntington disease: sex specific influence of apolipoprotein E genotype and normal CAG repeat length. J Med Genet 36:108–111

    PubMed  CAS  Google Scholar 

  • Li J-L, Hayden MR, Almqvist EW, Brinkman RR, Durr A, Dodé C, Morrison PJ, Suchowersky O, Ross CA, Margolis RL, Rosenblatt A, Gómez-Tortosa E, Cabrero DM, Novelletto A, Frontali M, Nance M, Trent RJA, McCusker E, Jones R, Paulsen JS, Harrison M, Zanko A, Abramson RK, Russ AL, Knowlton B, Djoussé L, Mysore JS, Tariot S, Gusella MF, Wheeler VC, Atwood LD, Cupples LA, Saint-Hilaire M, Cha J-HJ, Hersch SM, Koroshetz WJ, Gusella JF, MacDonald ME, Myers RH (2003) A genome scan for modifiers of age at onset in Huntington disease: the HD MAPS study. Am J Hum Genet 73:682–687

    Article  PubMed  CAS  Google Scholar 

  • MacDonald ME, Vonsattel JP, Shrinidhi J, Couropmitree NN, Cupples LA, Bird ED, Gusella JF, Myers RH (1999) Evidence for the GluR6 gene associated with younger onset age of Huntington’s disease. Neurology 53:1330–1332

    PubMed  CAS  Google Scholar 

  • Metzger S, Bauer P, Tomiuk J, Laccone F, Didonato S, Gellera C, Soliveri P, Lange HW, Weirich-Schwaiger H, Wenning GK, Melegh B, Havasi V, Balikó L, Wieczorek S, Arning L, Zaremba J, Sulek A, Hoffman-Zacharska D, Basak AN, Ersoy N, Zidovska J, Kebrdlova V, Pandolfo M, Ribaï P, Kebrdlova V, Kadasi L, Kvasnicova M, Weber BHF, Kreuz F, Dose M, Stuhrmann M, Riess O (2006) The S18Y polymorphism in the UCHL1 gene is a genetic modifier in Huntington’s disease. Neurogenetics 7:27–30

    Article  PubMed  CAS  Google Scholar 

  • Nazé P, Vuillaume I, Destée A, Pasquier F, Sablonnière B (2002) Mutation analysis and association studies of the ubiquitin carboxy-terminal hydrolase L1 gene in Huntington’s disease. Neurosci Lett 328:1–4

    Article  PubMed  Google Scholar 

  • Paschen W, Blackstone CD, Huganir RL, Ross CA (1994) Human GluR6 kainate receptor (GRIK2): molecular cloning, expression, polymorphism, and chromosomal assignment. Genomics 20:435–440

    Article  PubMed  CAS  Google Scholar 

  • Riess O, Noerremoelle A, Soerensen SA, Epplen JT (1993) Improved conditions for the stretch of (CAG)n repeats causing Huntington’s disease. Hum Mol Genet 2:637–1523

    Article  PubMed  CAS  Google Scholar 

  • Rolfs A, Koeppen AH, Bauer I, Bauer P, Buhlmann S, Topka H, Schöls L, Riess O (2003) Clinical features and neuropathology of autosomal dominant spinocerebellar ataxia (SCA17). Ann Neurol 54:367–375

    Article  PubMed  Google Scholar 

  • Rosenblatt A, Brinkman RR, Liang KY, Almqvist EW, Margolis RL, Huang CY, Sherr M, Franz ML, Abbott MH, Hayden MR, Ross CA (2002) Familial influence on age of onset among siblings with Huntington disease. Am J Med Genet 105:399–403

    Article  Google Scholar 

  • Rubinsztein DC, Leggo J, Chiano M, Dodge A, Norbury G, Rosser E, Craufurd D (1997) Genotypes at the GluR6 kainate receptor locus are associated with variation in the age of onset of Huntington disease. Proc Natl Acad Sci USA 94:3872–3876

    Article  PubMed  CAS  Google Scholar 

  • Schaffar G, Breuer P, Boteva R, Behrends C, Tzvetkov N, Strippel N, Sakahira H, Siegers K, Hayer-Hartl M, Hartl FU (2004) Cellular toxicity of polyglutamine expansion proteins: mechanism of transcription factor deactivation. Mol Cell 15:95–105

    Article  PubMed  CAS  Google Scholar 

  • Singaraja RR, Hadano S, Metzler M, Givan S, Wellington CL, Warby S, Yanai A, Gutekunst CA, Leavitt BR, Yi H, Fichter K, Gan L, McCutcheon K, Chopra V, Michel J, Hersch SM, Ikeda J-E, Hayden MR (2002) HIP14, a novel ankyrin domain-containing protein, links huntingtin to intracellular trafficking and endocytosis. Hum Mol Genet 11:2815–2828

    Article  PubMed  CAS  Google Scholar 

  • Stine OC, Pleasant N, Franz ML, Abbott MH, Folstein SE, Ross CA (1993) Correlation between the onset age of Huntington’s disease and length of the trinucleotide repeat in IT-15. Hum Mol Genet 2:1547–1549

    Article  PubMed  CAS  Google Scholar 

  • Tanaka M, Machida Y, Niu S, Ikeda T, Jana NR, Doi H, Kurosawa M, Nekooki M, Nukina N (2004) Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease. Nat Med 10:148–154

    Article  PubMed  CAS  Google Scholar 

  • The Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 26:971–983

    Google Scholar 

  • The U.S.–Venezuela Collaborative Research Project, Wexler NS (2004) Venezuelan kindreds reveal that genetic and environmental factors modulate Huntington’s disease age of onset. Proc Natl Acad Sci 101:3498–3503

    Article  PubMed  CAS  Google Scholar 

  • Thu DCV, Oorschot DE, Tippet L, Hogg V, Waldvogel HJ, Faull RLM (2005) The variable pattern of cell loss in the cerebral cortex correlates with the variable pattern of symptomatology in Huntington’s disease [abstract]. J Neurol Neurosurg Psychiatry 76(suppl 4):A16

    Google Scholar 

  • van Dellen A, Blakemore C, Deacon R, York D, Hannan AJ (2000) Delaying the onset of Huntington’s in mice. Nature 404:721–722

    Article  PubMed  Google Scholar 

  • Wanker EE, Rovira C, Scherzinger E, Hasenbank R, Walter S, Tait D, Colicelli J, Lehrach H (1997) HIP-I: a huntingtin interacting protein isolated by the yeast two-hybrid system. Hum Mol Genet 6:487–495

    Article  PubMed  CAS  Google Scholar 

  • Yanagisawa H, Bundo M, Miyashita Y, Okamura-Oho Y, Tadokoro K, Tokunaga K, Yamada M (2000) Protein binding of a DRPLA family through arginine-glutamic acid dipeptide repeats is enhanced by extended polyglutamine. Hum Mol Genet 9:1433–1442

    Article  PubMed  CAS  Google Scholar 

  • Zuccato C, Ciammola A, Rigamonti D, Leavitt BR, Goffredo D, Conti L, MacDonald ME, Friedlander RM, Silani V, Hayden MR, Timmusk T, Sipione S, Cattaneo E (2001) Loss of huntingtin-mediated BDNF gene transcription in Huntington’s disease. Science 293:493–498

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the GeNeMove Network for hereditary movement disorders financed by BMBF. SDD research was supported by a grant of the Italian Minister of Health “Malattie Neurodegenerative” 2004–2006. The Polish part of the study performed in the Department of Genetics, Institute of Psychiatry and Neurology was supported by the State Committee for Scientific Research PBZ-KBN-042/P05/2001. ANB’s research is sponsored by Bogazici University Research Funds and by Suna-Inan Kirac Foundation. The authors are grateful to Drs Marc Abramowicz and Pascale Cochaux from the Department of Molecular Genetics of Erasme Hospital, Brussels, Belgium, for their help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olaf Riess.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Metzger, S., Bauer, P., Tomiuk, J. et al. Genetic analysis of candidate genes modifying the age-at-onset in Huntington’s disease. Hum Genet 120, 285–292 (2006). https://doi.org/10.1007/s00439-006-0221-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-006-0221-2

Keywords

Navigation