Skip to main content

Advertisement

Log in

A genome-wide approach to identifying novel-imprinted genes

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Genomic imprinting is an epigenetic process in which the copy of a gene inherited from one parent (maternal or paternal) is consistently silenced or expressed at a significantly lower level than the copy from the other parent. In an effort to begin a systematic genome-wide screen for imprinted genes, we assayed differential allelic expression (DAE) at 3,877 bi-allelic protein-coding sites located in 2,625 human genes in 67 unrelated individuals using genotyping microarrays. We used the presence of both over- and under-expression of the reference allele compared to the alternate allele to identify candidate-imprinted genes. We found 61 genes with at least twofold DAE plus “flipping” of the more highly expressed allele between reference and alternate across heterozygous samples. Sixteen flipping genes were genotyped and assayed for DAE in an independent data set of lymphoblastoid cell lines from two CEPH pedigrees. We confirmed that PEG10 is paternally expressed, identified one gene (ZNF331) with multiple lines of data indicating it is imprinted, and predicted several additional imprinting candidate genes. Our findings suggest that there are at most several hundred genes in the human genome that are universally imprinted. With samples of mRNA from appropriate tissues and a collection of informative cSNPs, a genome-wide search using this methodology could expand the list of genes that undergo genomic imprinting in a tissue- or temporal-specific manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate—a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300

    Google Scholar 

  • Fulmer-Smentek SB, Francke U (2001) Association of acetylated histones with paternally expressed genes in the Prader-Willi deletion region. Hum Mol Genet 10:645–652

    Article  PubMed  CAS  Google Scholar 

  • Ge B, Gurd S, Gaudin T, Dore C, Lepage P, Harmsen E, Hudson TJ, Pastinen T (2005) Survey of allelic expression using EST mining. Genome Res 15:1584–1591

    Article  PubMed  CAS  Google Scholar 

  • Gibson G, Weir B (2005) The quantitative genetics of transcription. Trends Genet 21:616–623

    Article  PubMed  CAS  Google Scholar 

  • Grabowski M, Zimprich A, Lorenz-Depiereux B, Kalscheuer V, Asmus F, Gasser T, Meitinger T, Strom TM (2003) The epsilon-sarcoglycan gene (SGCE), mutated in myoclonus-dystonia syndrome, is maternally imprinted. Eur J Hum Genet 11:138–144

    Article  PubMed  CAS  Google Scholar 

  • Hinds DA, Stuve LL, Nilsen GB, Halperin E, Eskin E, Ballinger DG, Frazer KA, Cox DR (2005) Whole-genome patterns of common DNA variation in three human populations. Science 307:1072–1079

    Article  PubMed  CAS  Google Scholar 

  • Kamiya M, Judson H, Okazaki Y, Kusakabe M, Muramatsu M, Takada S, Takagi N, Arima T, Wake N, Kamimura K, Satomura K, Hermann R, Bonthron DT, Hayashizaki Y (2000) The cell cycle control gene ZAC/PLAGL1 is imprinted—a strong candidate gene for transient neonatal diabetes. Hum Mol Genet 9:453–460

    Article  PubMed  CAS  Google Scholar 

  • Lo HS, Wang Z, Hu Y, Yang HH, Gere S, Buetow KH, Lee MP (2003) Genetic variation in gene expression is common in the human genome. Genome Res 13:1855–1862

    Article  PubMed  CAS  Google Scholar 

  • Luedi PP, Hartemink AJ, Jirtle RL (2005) Genome-wide prediction of imprinted murine genes. Genome Res 15:875–884

    Article  PubMed  CAS  Google Scholar 

  • Monk D, Arnaud P, Apostolidou S, Hills FA, Kelsey G, Stanier P, Feil R, Moore GE (2006) Limited evolutionary conservation of imprinting in the human placenta. Proc Natl Acad Sci USA 103:6623–6628

    Article  PubMed  CAS  Google Scholar 

  • Morison IM, Ramsay JP, Spencer HG (2005) Evolution of mammalian imprinting. Trends Genet 21:457–465

    Article  PubMed  CAS  Google Scholar 

  • Murphy SK, Jirtle RL (2003) Imprinting evolution and the price of silence. BioEssays 25:577–588

    Article  PubMed  CAS  Google Scholar 

  • Nikaido I, Saito C, Mizuno Y, Meguro M, Bono H, Kadomura M, Kono T, Morris GA, Lyons PA, Oshimura M, RIKEN GER Group, GSL Members, Hayashizaki Y, Okazaki Y (2003) Discovery of imprinted transcripts in the mouse transcriptome using large-scale expression profiling. Genome Res 13:1402–1409

    Article  PubMed  CAS  Google Scholar 

  • Pant PV, Tao H, Beilharz EJ, Ballinger DG, Cox DR, Frazer KA (2006) Analysis of allelic differential expression in human white blood cells. Genome Res 16:331–339

    Article  PubMed  CAS  Google Scholar 

  • Pastinen T, Sladek R, Gurd S, Sammak A, Ge B, Lepage P, Lavergne K, Villeneuve A, Gaudin T, Brandstrom H, Beck A, Verner A, Kingsley J, Harmsen E, Labuda D, Morgan K, Vohl MC, Naumova AK, Sinnett D, Hudson TJ (2004) A survey of genetic and epigenetic variation affecting human gene expression. Physiol Genomics 16:184–193

    PubMed  CAS  Google Scholar 

  • Pastinen T, Ge B, Gurd S, Gaudin T, Dore C, Lemire M, Lepage P, Harmsen E, Hudson TJ (2005) Mapping common regulatory variants to human haplotypes. Hum Mol Genet 14:3963–3971

    Article  PubMed  CAS  Google Scholar 

  • Reik W, Walter J (2001) Evolution of imprinting mechanisms: the battle of the sexes begins in the zygote. Nat Genet 27:255–256

    Article  PubMed  CAS  Google Scholar 

  • Ruf N, Dunzinger U, Brinckmann A, Haaf T, Nurnberg P, Zechner U (2006) Expression profiling of uniparental mouse embryos is inefficient in identifying novel imprinted genes. Genomics 87:509–519

    Article  PubMed  CAS  Google Scholar 

  • Ruf N, Bahring S, Galetska D, Pliushch G, Luft F, Nurnberg P, Haaf T, Kelsey G, Zechner U (2007) Sequence-based bioinformatic prediction and QUASEP identify genomic imprinting of the KCNK9 potassium channel gene in mouse and human. Hum Mol Genet 16:2591–2599

    Article  PubMed  CAS  Google Scholar 

  • Schweizer J, Zynger D, Francke U (1999) In vivo nuclease hypersensitivity studies reveal multiple sites of parental origin-dependent differential chromatin conformation in the 150 kb SNRPN transcription unit. Hum Mol Genet 8:555–566

    Article  PubMed  CAS  Google Scholar 

  • Spencer HG, Feldman MW, Clark AG (1998) Genetic conflicts, multiple paternity and the evolution of genomic imprinting. Genetics 148:893–904

    PubMed  CAS  Google Scholar 

  • Spielman RS, Bastone LA, BurdickJT, Morely M, Ewens WJ, Cheung VG (2007) Common genetic variants account for differences in gene expression among ethnic groups. Nat Genet 39:226–231

    Article  PubMed  CAS  Google Scholar 

  • Storey JD, Madeoy J, Strout JL, Wurfel M, Ronald J, Akey JM (2007) Gene-expression variation within and among human populations. Am J Hum Genet 80:502–509

    Article  PubMed  CAS  Google Scholar 

  • Stranger BE, Forrest MS, Clark AG, Minichiello MJ, Deutsch S, Lyle R, Hunt S, Kahl B, Antonarakis SE, Tavaré S, Deloukas P, Dermitzakis ET (2005) Genome-wide associations of gene expression variation in humans. PLoS Genet 1:e78

    Article  PubMed  Google Scholar 

  • Tao H, Cox DR, Frazer KA (2006) Allele-specific KRT1 expression is a complex trait. PLoS Genet 2:e93

    Article  PubMed  Google Scholar 

  • Valleley EM, Cordery SF, Bonthron DT (2007) Tissue-specific imprinting of the ZAC/PLAGL1 tumour suppressor gene results from variable utilization of monoallelic and biallelic promoters. Hum Mol Genet 16:972–981

    Article  PubMed  CAS  Google Scholar 

  • Yan H, Yuan W, Velculescu VE, Vogelstein B, Kinzler KW (2002) Allelic variation in human gene expression. Science 297:1143

    Article  PubMed  CAS  Google Scholar 

  • Zhou H, Brockington M, Jungbluth H, Monk D, Stanier P, Sewry CA, Moore GE, Muntoni F (2006) Epigenetic allele silencing unveils recessive RYR1 mutations in core myopathies. Am J Hum Genet 79:859–868

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

At Perlegen Sciences we thank Erica J. Beilharz for project management assistance, Geoff B. Nilsen for designing the high-density array, and P.V. Pant for assistance with data analysis. At McGill University we thank Scott Gurd for technical assistance, Tomi M. Pastinen for supporting the osteoblast work and helpful discussions, and Olof Nilsson at Uppsala University, Sweden for collecting the bone samples for the osteoblast panel. T.J. Hudson is the recipient of a Clinician-Scientist Award in Translational Research by the Burroughs Wellcome Fund. This work was supported by an NHGRI grant to K.A. Frazer and by Genome Canada and Genome Quebec grants to T.J. Hudson. K.A. Frazer is a former employee of Perlegen Sciences, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine S. Pollard.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figures (DOC 0.98 MB)

Supplementary Tables (XLS 217 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pollard, K.S., Serre, D., Wang, X. et al. A genome-wide approach to identifying novel-imprinted genes. Hum Genet 122, 625–634 (2008). https://doi.org/10.1007/s00439-007-0440-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-007-0440-1

Keywords

Navigation