Skip to main content
Log in

KATP channel Kir6.2 E23K variant overrepresented in human heart failure is associated with impaired exercise stress response

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

ATP-sensitive K+ (KATP) channels maintain cardiac homeostasis under stress, as revealed by murine gene knockout models of the KCNJ11-encoded Kir6.2 pore. However, the translational significance of KATP channels in human cardiac physiology remains largely unknown. Here, the frequency of the minor K23 allele of the common functional Kir6.2 E23K polymorphism was found overrepresented in 115 subjects with congestive heart failure compared to 2,031 community-based controls (69 vs. 56%, P < 0.001). Moreover, the KK genotype, present in 18% of heart failure patients, was associated with abnormal cardiopulmonary exercise stress testing. In spite of similar baseline heart rates at rest among genotypic subgroups (EE: 72.2 ± 2.3, EK: 75.0 ± 1.8 and KK: 77.1 ± 3.0 bpm), subjects with the KK genotype had a significantly reduced heart rate increase at matched workload (EE: 32.8 ± 2.7%, EK: 28.8 ± 2.1%, KK: 21.7 ± 2.6%, P < 0.05), at 75% of maximum oxygen consumption (EE: 53.9 ± 3.9%, EK: 49.9 ± 3.1%, KK: 36.8 ± 5.3%, P < 0.05), and at peak VO2 (EE: 82.8 ± 6.0%, EK: 80.5 ± 4.7%, KK: 59.7 ± 8.1%, P < 0.05). Molecular modeling of the tetrameric Kir6.2 pore structure revealed the E23 residue within the functionally relevant intracellular slide helix region. Substitution of the wild-type E residue with an oppositely charged, bulkier K residue would potentially result in a significant structural rearrangement and disrupted interactions with neighboring Kir6.2 subunits, providing a basis for altered high-fidelity KATP channel gating, particularly in the homozygous state. Blunted heart rate response during exercise is a risk factor for mortality in patients with heart failure, establishing the clinical relevance of Kir6.2 E23K as a biomarker for impaired stress performance and underscoring the essential role of KATP channels in human cardiac physiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abraham MR, Selivanov VA, Hodgson DM, Pucar D, Zingman LV, Wieringa B, Dzeja PP, Alekseev AE, Terzic A (2002) Coupling of cell energetics with membrane metabolic sensing. Integrative signaling through creatine kinase phosphotransfer disrupted by M-CK gene knock-out. J Biol Chem 277:24427–24434

    Article  CAS  PubMed  Google Scholar 

  • Aguilar-Bryan L, Clement JPT, Gonzalez G, Kunjilwar K, Babenko A, Bryan J (1998) Toward understanding the assembly and structure of KATP channels. Physiol Rev 78:227–245

    CAS  PubMed  Google Scholar 

  • Alekseev AE, Hodgson DM, Karger AB, Park S, Zingman LV, Terzic A (2005) ATP-sensitive K+ channel channel/enzyme multimer: metabolic gating in the heart. J Mol Cell Cardiol 38:895–905

    Article  CAS  PubMed  Google Scholar 

  • Antcliff JF, Haider S, Proks P, Sansom MS, Ashcroft FM (2005) Functional analysis of a structural model of the ATP-binding site of the KATP channel Kir6.2 subunit. EMBO J 24:229–239

    Article  CAS  PubMed  Google Scholar 

  • Ashcroft FM (2005) ATP-sensitive potassium channelopathies: focus on insulin secretion. J Clin Invest 115:2047–2058

    Article  CAS  PubMed  Google Scholar 

  • Ashcroft FM (2006) From molecule to malady. Nature 440:440–447

    Article  CAS  PubMed  Google Scholar 

  • Bienengraeber M, Olson TM, Selivanov VA, Kathmann EC, O’Cochlain F, Gao F, Karger AB, Ballew JD, Hodgson DM, Zingman LV, Pang Y-P, Alekseev AE, Terzic A (2004) ABCC9 mutations identified in human dilated cardiomyopathy disrupt catalytic KATP channel gating. Nat Genet 36:382–387

    Article  CAS  PubMed  Google Scholar 

  • Carrasco AJ, Dzeja PP, Alekseev AE, Pucar D, Zingman LV, Abraham MR, Hodgson D, Bienengraeber M, Puceat M, Janssen E, Wieringa B, Terzic A (2001) Adenylate kinase phosphotransfer communicates cellular energetic signals to ATP-sensitive potassium channels. Proc Natl Acad Sci USA 98:7623–7628

    Article  CAS  PubMed  Google Scholar 

  • Colucci W, Ribeiro J, Rocco M, Quigg R, Creager M, Marsh J, Gauthier D, Hartley L (1989) Impaired chronotropic response to exercise in patients with congestive heart failure. Role of postsynaptic beta-adrenergic desensitization. Circulation 80:314–323

    CAS  PubMed  Google Scholar 

  • Diller GP, Dimopoulos K, Okonko D, Uebing A, Broberg CS, Babu-Narayan S, Bayne S, Poole-Wilson PA, Sutton R, Francis DP, Gatzoulis MA (2006) Heart rate response during exercise predicts survival in adults with congenital heart disease. J Am Coll Cardiol 48:1250–1256

    Article  PubMed  Google Scholar 

  • Dresing TJ, Blackstone EH, Pashkow FJ, Snader CE, Marwick TH, Lauer MS (2000) Usefulness of impaired chronotropic response to excise as a predictor of mortality, independent of the severity of coronary artery disease. Am J Cardiol 86:602–609

    Article  CAS  PubMed  Google Scholar 

  • Eisenach JH, Barnes SA, Pike TL, Sokolnicki LA, Masuki S, Dietz NM, Rehfeldt KH, Turner ST, Joyner MJ (2005) Arg16/Gly β2-adrenergic receptor polymorphism alters the cardiac output response to isometric exercise. J Appl Physiol 99:1776–1781

    Article  CAS  PubMed  Google Scholar 

  • Elhendy A, Mahoney DW, Khandheria BK, Burger K, Pellika PA (2003) Prognostic significance of impairment of heart rate response to exercise. J Am Coll Cardiol 42:823–830

    Article  PubMed  Google Scholar 

  • Fukuzaki K, Sato T, Miki T, Seino S, Nakaya H (2008) Role of sarcolemmal ATP-sensitive K+ channels in the regulation of sinoatrial node automaticity: an evaluation using Kir6.2-deficient mice. J Physiol 586:2767–2778

    Article  CAS  PubMed  Google Scholar 

  • Goldstein DB (2009) Common genetic variation and human traits. N Engl J Med 360:1696–1698

    Article  CAS  PubMed  Google Scholar 

  • Gumina RJ, Pucar D, Bast P, Hodgson DM, Kurtz CE, Dzeja PP, Miki T, Seino S, Terzic A (2003) Knockout of Kir6.2 negates ischemic preconditioning-induced protection of myocardial energetics. Am J Physiol Heart Circ Physiol 284:H2106–H2113

    CAS  PubMed  Google Scholar 

  • Gumina RJ, O’Cochlain DF, Kurtz CE, Bast P, Pucar D, Mishra P, Miki T, Seino S, Macura S, Terzic A (2007) KATP channel knockout worsens myocardial calcium stress load in vivo and impairs recovery in stunned heart. Am J Physiol Heart Circ Physiol 292:H1706–H1713

    Article  CAS  PubMed  Google Scholar 

  • Haider S, Khalid S, Tucker SJ, Ashcroft FM, Sansom MS (2007) Molecular dynamics simulations of inwardly rectifying (Kir) potassium channels: a comparative study. Biochemistry 46:3643–3652

    Article  CAS  PubMed  Google Scholar 

  • Han X, Light PE, Giles WR, French RJ (1996) Identification and properties of an ATP-sensitive K+ current in rabbit sino-atrial node pacemaker cells. J Physiol 490:337–350

    CAS  PubMed  Google Scholar 

  • Heled Y, Moran DS, Mendel L, Laor A, Pras E, Shapiro Y (2004) Human ACE I/D polymorphism is associated with individual differences in exercise heat tolerance. J Appl Physiol 97:72–76

    Article  CAS  PubMed  Google Scholar 

  • Hodgson DM, Zingman LV, Kane GC, Perez-Terzic C, Bienengraeber M, Ozcan C, Gumina RJ, Pucar D, O’Coclain F, Mann DL, Alekseev AE, Terzic A (2003) Cellular remodeling in heart failure disrupts KATP channel-dependent stress tolerance. EMBO J 22:1732–1742

    Article  CAS  PubMed  Google Scholar 

  • Inagaki N, Gonoi T, Clement JPT, Namba N, Inazawa J, Gonzalez G, Aguilar-Bryan L, Seino S, Bryan J (1995) Reconstitution of I-KATP: an inward rectifier subunit plus the sulfonylurea receptor. Science 270:1166–1170

    Article  CAS  PubMed  Google Scholar 

  • Jouven X, Empana JP, Schwartz PJ, Desnos M, Courbon D, Ducimetiere P (2005) Heart-rate profile during exercise as a predictor of sudden death. N Engl J Med 352:1951–1958

    Article  CAS  PubMed  Google Scholar 

  • Kane GC, Behfar A, Yamada S, Perez-Terzic C, O’Cochlain F, Reyes S, Dzeja PP, Miki T, Seino S, Terzic A (2004) ATP-sensitive K+ channel knockout compromises the metabolic benefit of exercise training, resulting in cardiac deficits. Diabetes 53:S169–S175

    Article  CAS  PubMed  Google Scholar 

  • Kane GC, Liu X-K, Yamada S, Olson TM, Terzic A (2005) Cardiac KATP channels in health and disease. J Mol Cell Cardiol 38:937–943

    Article  CAS  PubMed  Google Scholar 

  • Kane GC, Behfar A, Dyer RB, O’Cochlain DF, Liu X-K, Hodgson DM, Reyes S, Miki T, Seino S, Terzic A (2006a) KCNJ11 gene knockout of the Kir6.2 KATP channel causes maladaptive remodeling and heart failure in hypertension. Hum Mol Genet 15:2285–2297

    Article  CAS  PubMed  Google Scholar 

  • Kane GC, Lam CF, O’Cochlain F, Hodgson DM, Reyes S, Liu XK, Miki T, Seino S, Katusic ZS, Terzic A (2006b) Gene knockout of the KCNJ8-encoded Kir6.1 KATP channel imparts fatal susceptibility to endotoxemia. FASEB J 20:2271–2280

    Article  CAS  PubMed  Google Scholar 

  • Karger AB, Park S, Reyes S, Bienengraeber M, Dyer RB, Terzic A, Alekseev AE (2008) Role for SUR2A ED domain in allosteric coupling within the KATP channel complex. J Gen Physiol 131:185–196

    Article  CAS  PubMed  Google Scholar 

  • Kowles RV (2001) Solving problems in genetics. Springer, New York, pp 451–456

    Google Scholar 

  • Kuo A, Gulbis JM, Antcliff JF, Rahman T, Lowe ED, Zimmer J, Cuthbertson J, Ashcroft FM, Ezaki T, Doyle DA (2003) Crystal structure of the potassium channel KirBac1.1 in the closed state. Science 300:1922–1926

    Article  CAS  PubMed  Google Scholar 

  • Li L, Shi Y, Wang X, Shi W, Jiang C (2005) Single nucleotide polymorphisms in KATP channels: muscular impact on type 2 diabetes. Diabetes 54:1592–1597

    Article  CAS  PubMed  Google Scholar 

  • Liu X-K, Yamada S, Kane GC, Alekseev AE, Hodgson DM, O’Cochlain F, Jahangir A, Miki T, Seino S, Terzic A (2004) Genetic disruption of Kir6.2, the pore-forming subunit of ATP-sensitive K+ channel, predisposes to catecholamine-induced ventricular dysrhythmia. Diabetes 53:S165–S168

    Article  CAS  PubMed  Google Scholar 

  • Lorenz E, Terzic A (1999) Physical association between recombinant cardiac ATP-sensitive K+ channel subunits Kir6.2 and SUR2A. J Mol Cell Cardiol 31:425–434

    Article  CAS  PubMed  Google Scholar 

  • Marionneau Cl, Couette B, Liu J, Li H, Mangoni ME, Nargeot Jl, Lei M, Escande D, Demolombe S (2005) Specific pattern of ionic channel gene expression associated with pacemaker activity in the mouse heart. J Physiol 562:223–234

    Article  CAS  PubMed  Google Scholar 

  • Miki T, Seino S (2005) Roles of KATP channels as metabolic sensors in acute metabolic changes. J Mol Cell Cardiol 38:917–925

    Article  CAS  PubMed  Google Scholar 

  • Morris AL, MacArthur MW, Hutchinson EG, Thornton JM (1992) Stereochemical quality of protein structure coordinates. Proteins 12:345–364

    Article  CAS  PubMed  Google Scholar 

  • Myers J, Arena R, Dewey F, Bensimhon D, Abella J, Hsu L, Chase P, Guazzi M, Peberdy MA (2008) A cardiopulmonary exercise testing score for predicting outcomes in patients with heart failure. Am Heart J 156:1177–1183

    Article  PubMed  Google Scholar 

  • Nichols CG (2006) KATP channels as molecular sensors of cellular metabolism. Nature 440:470–476

    Article  CAS  PubMed  Google Scholar 

  • Nishida M, MacKinnon R (2002) Structural basis of inward rectification: cytoplasmic pore of the G protein-gated inward rectifier GIRK1 at 1.8 A resolution. Cell 111:957–965

    Article  CAS  PubMed  Google Scholar 

  • Olson TM, Alekseev AE, Moreau C, Liu XK, Zingman LV, Miki T, Seino S, Asirvatham SJ, Jahangir A, Terzic A (2007) KATP channel mutation confers risk for vein of Marshall adrenergic atrial fibrillation. Nat Clin Pract Cardiovasc Med 4:110–116

    Article  CAS  PubMed  Google Scholar 

  • Park S, Lim BB, Perez-Terzic C, Mer G, Terzic A (2008) Interaction of asymmetric ABCC9-encoded nucleotide binding domains determines KATP channel SUR2A catalytic activity. J Proteome Res 7:1721–1728

    Article  CAS  PubMed  Google Scholar 

  • Reyes S, Kane GC, Miki T, Seino S, Terzic A (2007) KATP channels confer survival advantage in cocaine overdose. Mol Psychiatry 12:1060–1061

    Article  CAS  PubMed  Google Scholar 

  • Reyes S, Terzic A, Mahoney DW, Redfield MM, Rodeheffer RJ, Olson TM (2008) KATP channel polymorphism is associated with left ventricular size in hypertensive individuals: a large-scale community-based study. Hum Genet 123:665–667

    Article  CAS  PubMed  Google Scholar 

  • Riedel MJ, Boora P, Steckley D, de Vries G, Light PE (2003) Kir6.2 polymorphisms sensitize β-cell ATP-sensitive potassium channels to activation by acyl CoAs. Diabetes 52:2630–2635

    Article  CAS  PubMed  Google Scholar 

  • Riedel MJ, Steckley DC, Light PE (2005) Current status of the E23K Kir6.2 polymorphism: implications for type-2 diabetes. Hum Genet 116:133–145

    Article  CAS  PubMed  Google Scholar 

  • Sattiraju S, Reyes S, Kane G, Terzic A (2008) KATP channel pharmacogenomics: from bench to bedside. Clin Pharmacol Ther 83:354–357

    Article  CAS  PubMed  Google Scholar 

  • Savonen KP, Lakka TA, Laukkanen JA, Halonen PM, Rauramaa TH, Salonen JT, Rauramaa R (2006) Heart rate response during exercise test and cardiovascular mortality in middle-aged men. Eur Heart J 27:582–588

    Article  PubMed  Google Scholar 

  • Schiller NB, Shah PM, Crawford M, DeMaria A, Devereux R, Feigenbaum H, Gutgesell H, Reichek N, Sahn D, Schnittger I et al (1989) Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. J Am Soc Echocardiogr 2:358–367

    CAS  PubMed  Google Scholar 

  • Schwanstecher C, Meyer U, Schwanstecher M (2002) Kir6.2 polymorphism predisposes to type 2 diabetes by inducing overactivity of pancreatic β-cell ATP-sensitive K+ channels. Diabetes 51:875–879

    Article  CAS  PubMed  Google Scholar 

  • Selivanov VA, Alekseev AE, Hodgson DM, Dzeja PP, Terzic A (2004) Nucleotide-gated KATP channels integrated with creatine and adenylate kinases: amplification, tuning and sensing of energetic signals in the compartmentalized cellular environment. Mol Cell Biochem 256–257:243–256

    Article  PubMed  Google Scholar 

  • Snyder EM, Turner ST, Johnson BD (2006) β2-adrenergic receptor genotype and pulmonary function in patients with heart failure. Chest 130:1527–1534

    Article  PubMed  Google Scholar 

  • Suzuki M, Sasaki N, Miki T, Sakamoto N, Ohmoto-Sekine Y, Tamagawa M, Seino S, Marban E, Nakaya H (2002) Role of sarcolemmal KATP channels in cardioprotection against ischemia/reperfusion injury in mice. J Clin Invest 109:509–516

    CAS  PubMed  Google Scholar 

  • Villareal DT, Koster JC, Robertson H, Akrouh A, Miyake K, Bell GI, Patterson BW, Nichols CG, Polonsky KS (2009) Kir6.2 variant E23K increases ATP-sensitive potassium channel activity and is associated with impaired insulin release and enhanced insulin sensitivity in adults with normal glucose tolerance. Diabetes 58:1869–1878

    Article  CAS  PubMed  Google Scholar 

  • Wolk R, Snyder EM, Somers VK, Turner ST, Olson LJ, Johnson BD (2007) Arginine 16 glycine β2-adrenoceptor polymorphism and cardiovascular structure and function in patients with heart failure. J Am Soc Echocardiogr 20:290–297

    Article  PubMed  Google Scholar 

  • Wu S, Skolnick J, Zhang Y (2007) Ab initio modeling of small proteins by iterative TASSER simulations. BMC Biol 5:17

    Article  PubMed  Google Scholar 

  • Yamada S, Kane GC, Behfar A, Liu X-K, Dyer RB, Faustino RS, Miki T, Seino S, Terzic A (2006) Protection conferred by myocardial ATP-sensitive K+ channels in pressure overload-induced congestive heart failure revealed in KCNJ11 Kir6.2-null mutant. J Physiol 577:1053–1065

    Article  CAS  PubMed  Google Scholar 

  • Yamada S, Nelson TJ, Crespo-Diaz RJ, Perez-Terzic C, Liu XK, Miki T, Seino S, Behfar A, Terzic A (2008) Embryonic stem cell therapy of heart failure in genetic cardiomyopathy. Stem Cells 26:2644–2653

    Article  PubMed  Google Scholar 

  • Yi Y, Dongmei L, Phares DA, Weiss EP, Brandauer J, Hagberg JM (2008) Association between KCNJ11 E23K genotype and cardiovascular and glucose metabolism phenotypes in older men and women. Exp Physiol 93:95–103

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y (2008) Progress and challenges in protein structure prediction. Curr Opin Struct Biol 18:342–348

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Skolnick J (2004) Automated structure prediction of weakly homologous proteins on a genomic scale. Proc Natl Acad Sci USA 101:7594–7599

    Article  CAS  PubMed  Google Scholar 

  • Zingman LV, Hodgson DM, Bast PH, Kane GC, Perez-Terzic C, Gumina RJ, Pucar D, Bienengraeber M, Dzeja PP, Miki T, Seino S, Alekseev AE, Terzic A (2002) Kir6.2 is required for adaptation to stress. Proc Natl Acad Sci USA 99:13278–13283

    Article  CAS  PubMed  Google Scholar 

  • Zingman LV, Hodgson DM, Alekseev AE, Terzic A (2003) Stress without distress: homeostatic role for KATP channels. Mol Psychiatry 8:253–254

    Article  CAS  PubMed  Google Scholar 

  • Zingman LV, Alekseev AE, Hodgson-Zingman DM, Terzic A (2007) ATP-sensitive potassium channels: metabolic sensing and cardioprotection. J Appl Physiol 103:1888–1893

    Article  CAS  PubMed  Google Scholar 

  • Zlatkovic J, Arrell DK, Kane GC, Miki T, Seino S, Terzic A (2009) Proteomic profiling of KATP channel-deficient hypertensive heart maps risk for maladaptive cardiomyopathic outcome. Proteomics 9:1314–1325

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health (HL071225, HL071478, HL064822), Marriott Heart Disease Research Program, and Mayo Graduate School.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andre Terzic or Timothy M. Olson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reyes, S., Park, S., Johnson, B.D. et al. KATP channel Kir6.2 E23K variant overrepresented in human heart failure is associated with impaired exercise stress response. Hum Genet 126, 779–789 (2009). https://doi.org/10.1007/s00439-009-0731-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-009-0731-9

Keywords

Navigation