Skip to main content
Log in

X-inactivation and X-reactivation: epigenetic hallmarks of mammalian reproduction and pluripotent stem cells

  • Review Paper
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

X-chromosome inactivation is an epigenetic hallmark of mammalian development. Chromosome-wide regulation of the X-chromosome is essential in embryonic and germ cell development. In the male germline, the X-chromosome goes through meiotic sex chromosome inactivation, and the chromosome-wide silencing is maintained from meiosis into spermatids before the transmission to female embryos. In early female mouse embryos, X-inactivation is imprinted to occur on the paternal X-chromosome, representing the epigenetic programs acquired in both parental germlines. Recent advances revealed that the inactive X-chromosome in both females and males can be dissected into two elements: repeat elements versus unique coding genes. The inactive paternal X in female preimplantation embryos is reactivated in the inner cell mass of blastocysts in order to subsequently allow the random form of X-inactivation in the female embryo, by which both Xs have an equal chance of being inactivated. X-chromosome reactivation is regulated by pluripotency factors and also occurs in early female germ cells and in pluripotent stem cells, where X-reactivation is a stringent marker of naive ground state pluripotency. Here we summarize recent progress in the study of X-inactivation and X-reactivation during mammalian reproduction and development as well as in pluripotent stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arpanahi A, Brinkworth M, Iles D, Krawetz SA, Paradowska A, Platts AE, Saida M, Steger K, Tedder P, Miller D (2009) Endonuclease-sensitive regions of human spermatozoal chromatin are highly enriched in promoter and CTCF binding sequences. Genome Res 19:1338–1349

    Article  PubMed  CAS  Google Scholar 

  • Baarends WM, Wassenaar E, van der Laan R, Hoogerbrugge J, Sleddens-Linkels E, Hoeijmakers JH, de Boer P, Grootegoed JA (2005) Silencing of unpaired chromatin and histone H2A ubiquitination in mammalian meiosis. Mol Cell Biol 25:1041–1053

    Article  PubMed  CAS  Google Scholar 

  • Bao S, Miyoshi N, Okamoto I, Jenuwein T, Heard E, Azim Surani M (2005) Initiation of epigenetic reprogramming of the X chromosome in somatic nuclei transplanted to a mouse oocyte. EMBO Rep 6:748–754

    Article  PubMed  CAS  Google Scholar 

  • Bao S, Tang F, Li X, Hayashi K, Gillich A, Lao K, Surani MA (2009) Epigenetic reversion of post-implantation epiblast to pluripotent embryonic stem cells. Nature 461:1292–1295

    Article  PubMed  CAS  Google Scholar 

  • Barakat TS, Jonkers I, Monkhorst K, Gribnau J (2010) X-changing information on X inactivation. Exp Cell Res 316:679–687

    Article  PubMed  CAS  Google Scholar 

  • Barakat TS, Gunhanlar N, Pardo CG, Achame EM, Ghazvini M, Boers R, Kenter A, Rentmeester E, Grootegoed JA, Gribnau J (2011) RNF12 activates Xist and is essential for X chromosome inactivation. PLoS Genet 7:e1002001

    Article  PubMed  CAS  Google Scholar 

  • Bellani MA, Romanienko PJ, Cairatti DA, Camerini-Otero RD (2005) SPO11 is required for sex-body formation, and Spo11 heterozygosity rescues the prophase arrest of Atm−/− spermatocytes. J Cell Sci 118:3233–3245

    Article  PubMed  CAS  Google Scholar 

  • Borsani G, Tonlorenzi R, Simmler MC, Dandolo L, Arnaud D, Capra V, Grompe M, Pizzuti A, Muzny D, Lawrence C et al (1991) Characterization of a murine gene expressed from the inactive X chromosome. Nature 351:325–329

    Article  PubMed  CAS  Google Scholar 

  • Brockdorff N, Ashworth A, Kay GF, Cooper P, Smith S, McCabe VM, Norris DP, Penny GD, Patel D, Rastan S (1991) Conservation of position and exclusive expression of mouse Xist from the inactive X chromosome. Nature 351:329–331

    Article  PubMed  CAS  Google Scholar 

  • Brons IG, Smithers LE, Trotter MW, Rugg-Gunn P, Sun B, de Chuva Sousa Lopes SM, Howlett SK, Clarkson A, Ahrlund-Richter L, Pedersen RA, Vallier L (2007) Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448:191–195

    Article  PubMed  CAS  Google Scholar 

  • Brown CJ, Ballabio A, Rupert JL, Lafreniere RG, Grompe M, Tonlorenzi R, Willard HF (1991) A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature 349:38–44

    Article  PubMed  CAS  Google Scholar 

  • Brykczynska U, Hisano M, Erkek S, Ramos L, Oakeley EJ, Roloff TC, Beisel C, Schubeler D, Stadler MB, Peters AH (2010) Repressive and active histone methylation mark distinct promoters in human and mouse spermatozoa. Nat Struct Mol Biol 17:679–687

    Article  PubMed  CAS  Google Scholar 

  • Buecker C, Chen HH, Polo JM, Daheron L, Bu L, Barakat TS, Okwieka P, Porter A, Gribnau J, Hochedlinger K, Geijsen N (2010) A murine ESC-like state facilitates transgenesis and homologous recombination in human pluripotent stem cells. Cell Stem Cell 6:535–546

    Article  PubMed  CAS  Google Scholar 

  • Chaumeil J, Le Baccon P, Wutz A, Heard E (2006) A novel role for Xist RNA in the formation of a repressive nuclear compartment into which genes are recruited when silenced. Genes Dev 20:2223–2237

    Article  PubMed  CAS  Google Scholar 

  • Chaumeil J, Waters PD, Koina E, Gilbert C, Robinson TJ, Marshall Graves JA (2011) Evolution from XIST-independent to XIST-controlled X-chromosome inactivation: epigenetic modifications in distantly related mammals. PLoS One 6:e19040

    Article  PubMed  CAS  Google Scholar 

  • Chiba H, Hirasawa R, Kaneda M, Amakawa Y, Li E, Sado T, Sasaki H (2008) De novo DNA methylation independent establishment of maternal imprint on X chromosome in mouse oocytes. Genesis 46:768–774

    Article  PubMed  CAS  Google Scholar 

  • Chow JC, Heard E (2010) Nuclear organization and dosage compensation. Cold Spring Harb Perspect Biol 2:a000604

    Article  PubMed  CAS  Google Scholar 

  • Chow JC, Ciaudo C, Fazzari MJ, Mise N, Servant N, Glass JL, Attreed M, Avner P, Wutz A, Barillot E, Greally JM, Voinnet O, Heard E (2010) LINE-1 activity in facultative heterochromatin formation during X chromosome inactivation. Cell 141:956–969

    Article  PubMed  CAS  Google Scholar 

  • Chureau C, Prissette M, Bourdet A, Barbe V, Cattolico L, Jones L, Eggen A, Avner P, Duret L (2002) Comparative sequence analysis of the X-inactivation center region in mouse, human, and bovine. Genome Res 12:894–908

    PubMed  CAS  Google Scholar 

  • Chureau C, Chantalat S, Romito A, Galvani A, Duret L, Avner P, Rougeulle C (2011) Ftx is a non-coding RNA which affects Xist expression and chromatin structure within the X-inactivation center region. Hum Mol Genet 20:705–718

    Article  PubMed  CAS  Google Scholar 

  • Chuva de Sousa Lopes SM, Hayashi K, Shovlin TC, Mifsud W, Surani MA, McLaren A (2008) X chromosome activity in mouse XX primordial germ cells. PLoS Genet 4:e30

    Article  PubMed  Google Scholar 

  • Clemson CM, Hall LL, Byron M, McNeil J, Lawrence JB (2006) The X chromosome is organized into a gene-rich outer rim and an internal core containing silenced nongenic sequences. Proc Natl Acad Sci USA 103:7688–7693

    Article  PubMed  CAS  Google Scholar 

  • de Napoles M, Nesterova T, Brockdorff N (2007) Early loss of Xist RNA expression and inactive X chromosome associated chromatin modification in developing primordial germ cells. PLoS One 2:e860

    Article  PubMed  CAS  Google Scholar 

  • Donohoe ME, Silva SS, Pinter SF, Xu N, Lee JT (2009) The pluripotency factor Oct4 interacts with Ctcf and also controls X-chromosome pairing and counting. Nature 460:128–132

    Article  PubMed  CAS  Google Scholar 

  • Duret L, Chureau C, Samain S, Weissenbach J, Avner P (2006) The Xist RNA gene evolved in eutherians by pseudogenization of a protein-coding gene. Science 312:1653–1655

    Article  PubMed  CAS  Google Scholar 

  • Erhardt S, Su IH, Schneider R, Barton S, Bannister AJ, Perez-Burgos L, Jenuwein T, Kouzarides T, Tarakhovsky A, Surani MA (2003) Consequences of the depletion of zygotic and embryonic enhancer of zeste 2 during preimplantation mouse development. Development 130:4235–4248

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Capetillo O, Mahadevaiah SK, Celeste A, Romanienko PJ, Camerini-Otero RD, Bonner WM, Manova K, Burgoyne P, Nussenzweig A (2003) H2AX is required for chromatin remodeling and inactivation of sex chromosomes in male mouse meiosis. Dev Cell 4:497–508

    Article  PubMed  CAS  Google Scholar 

  • Gillich A, Hayashi K (2011) Switching stem cell state through programmed germ cell reprogramming. Differentiation. doi:10.1016/j.diff.2011.01.003

  • Goto Y, Takagi N (2000) Maternally inherited X chromosome is not inactivated in mouse blastocysts due to parental imprinting. Chromosome Res 8:101–109

    Article  PubMed  CAS  Google Scholar 

  • Graves JA (1996) Mammals that break the rules: genetics of marsupials and monotremes. Annu Rev Genet 30:233–260

    Article  PubMed  CAS  Google Scholar 

  • Graves JA (2006) Sex chromosome specialization and degeneration in mammals. Cell 124:901–914

    Article  PubMed  CAS  Google Scholar 

  • Greaves IK, Rangasamy D, Devoy M, Marshall Graves JA, Tremethick DJ (2006) The X and Y chromosomes assemble into H2A.Z-containing facultative heterochromatin following meiosis. Mol Cell Biol 26:5394–5405

    Article  PubMed  CAS  Google Scholar 

  • Guo G, Yang J, Nichols J, Hall JS, Eyres I, Mansfield W, Smith A (2009) Klf4 reverts developmentally programmed restriction of ground state pluripotency. Development 136:1063–1069

    Article  PubMed  CAS  Google Scholar 

  • Hajkova P, Ancelin K, Waldmann T, Lacoste N, Lange UC, Cesari F, Lee C, Almouzni G, Schneider R, Surani MA (2008) Chromatin dynamics during epigenetic reprogramming in the mouse germ line. Nature 452:877–881

    Article  PubMed  CAS  Google Scholar 

  • Hall LL, Byron M, Butler J, Becker KA, Nelson A, Amit M, Itskovitz-Eldor J, Stein J, Stein G, Ware C, Lawrence JB (2008) X-inactivation reveals epigenetic anomalies in most hESC but identifies sublines that initiate as expected. J Cell Physiol 216:445–452

    Article  PubMed  CAS  Google Scholar 

  • Hammoud SS, Nix DA, Zhang H, Purwar J, Carrell DT, Cairns BR (2009) Distinctive chromatin in human sperm packages genes for embryo development. Nature 460:473–478

    PubMed  CAS  Google Scholar 

  • Hanna J, Saha K, Pando B, van Zon J, Lengner CJ, Creyghton MP, van Oudenaarden A, Jaenisch R (2009) Direct cell reprogramming is a stochastic process amenable to acceleration. Nature 462:595–601

    Article  PubMed  CAS  Google Scholar 

  • Hanna J, Cheng AW, Saha K, Kim J, Lengner CJ, Soldner F, Cassady JP, Muffat J, Carey BW, Jaenisch R (2010) Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs. Proc Natl Acad Sci USA 107:9222–9227

    Article  PubMed  CAS  Google Scholar 

  • Hayashi K, Surani MA (2009) Resetting the epigenome beyond pluripotency in the germline. Cell Stem Cell 4:493–498

    Article  PubMed  CAS  Google Scholar 

  • Heard E, Kress C, Mongelard F, Courtier B, Rougeulle C, Ashworth A, Vourc’h C, Babinet C, Avner P (1996) Transgenic mice carrying an Xist-containing YAC. Hum Mol Genet 5:441–450

    Article  PubMed  CAS  Google Scholar 

  • Hoffman LM, Hall L, Batten JL, Young H, Pardasani D, Baetge EE, Lawrence J, Carpenter MK (2005) X-inactivation status varies in human embryonic stem cell lines. Stem Cells 23:1468–1478

    Article  PubMed  CAS  Google Scholar 

  • Hoki Y, Kimura N, Kanbayashi M, Amakawa Y, Ohhata T, Sasaki H, Sado T (2009) A proximal conserved repeat in the Xist gene is essential as a genomic element for X-inactivation in mouse. Development 136:139–146

    Article  PubMed  CAS  Google Scholar 

  • Hornecker JL, Samollow PB, Robinson ES, Vandeberg JL, McCarrey JR (2007) Meiotic sex chromosome inactivation in the marsupial Monodelphis domestica. Genesis 45:696–708

    Article  PubMed  CAS  Google Scholar 

  • Huynh KD, Lee JT (2003) Inheritance of a pre-inactivated paternal X chromosome in early mouse embryos. Nature 426:857–862

    Article  PubMed  CAS  Google Scholar 

  • Huynh KD, Lee JT (2005) X-chromosome inactivation: a hypothesis linking ontogeny and phylogeny. Nat Rev Genet 6:410–418

    Article  PubMed  CAS  Google Scholar 

  • Ichijima Y, Ichijima M, Lou Z, Nussenzweig A, Camerini-Otero RD, Chen J, Andreassen PR, Namekawa SH (2011) MDC1 directs chromosome-wide silencing of the sex chromosomes in male germ cells. Genes Dev 25:959–971

    Google Scholar 

  • Inagaki A, Schoenmakers S, Baarends WM (2010) DNA double strand break repair, chromosome synapsis and transcriptional silencing in meiosis. Epigenetics 5:255–266

    Article  PubMed  CAS  Google Scholar 

  • Inoue K, Kohda T, Sugimoto M, Sado T, Ogonuki N, Matoba S, Shiura H, Ikeda R, Mochida K, Fujii T, Sawai K, Otte AP, Tian XC, Yang X, Ishino F, Abe K, Ogura A (2010) Impeding Xist expression from the active X chromosome improves mouse somatic cell nuclear transfer. Science 330:496–499

    Article  PubMed  CAS  Google Scholar 

  • Johnston CM, Newall AE, Brockdorff N, Nesterova TB (2002) Enox, a novel gene that maps 10 kb upstream of Xist and partially escapes X inactivation. Genomics 80:236–244

    Article  PubMed  CAS  Google Scholar 

  • Jonkers I, Barakat TS, Achame EM, Monkhorst K, Kenter A, Rentmeester E, Grosveld F, Grootegoed JA, Gribnau J (2009) RNF12 is an X-encoded dose-dependent activator of X chromosome inactivation. Cell 139:999–1011

    Article  PubMed  CAS  Google Scholar 

  • Kalantry S, Purushothaman S, Bowen RB, Starmer J, Magnuson T (2009) Evidence of Xist RNA-independent initiation of mouse imprinted X-chromosome inactivation. Nature 460:647–651

    PubMed  CAS  Google Scholar 

  • Kaneda M, Sado T, Hata K, Okano M, Tsujimoto N, Li E, Sasaki H (2004) Role of de novo DNA methyltransferases in initiation of genomic imprinting and X-chromosome inactivation. Cold Spring Harb Symp Quant Biol 69:125–129

    Article  PubMed  CAS  Google Scholar 

  • Kay GF, Barton SC, Surani MA, Rastan S (1994) Imprinting and X chromosome counting mechanisms determine Xist expression in early mouse development. Cell 77:639–650

    Article  PubMed  CAS  Google Scholar 

  • Khalil AM, Boyar FZ, Driscoll DJ (2004) Dynamic histone modifications mark sex chromosome inactivation and reactivation during mammalian spermatogenesis. Proc Natl Acad Sci USA 101:16583–16587

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Chu J, Shen X, Wang J, Orkin SH (2008) An extended transcriptional network for pluripotency of embryonic stem cells. Cell 132:1049–1061

    Article  PubMed  CAS  Google Scholar 

  • Kim DH, Jeon Y, Anguera MC, Lee JT (2011) X-chromosome epigenetic reprogramming in pluripotent stem cells via noncoding genes. Semin Cell Dev Biol. doi:10.1016/j.semcdb.2011.02.025

  • Kuckenberg P, Peitz M, Kubaczka C, Becker A, Egert A, Wardelmann E, Zimmer A, Brustle O, Schorle H (2011) Lineage conversion of murine extraembryonic trophoblast stem cells to pluripotent stem cells. Mol Cell Biol 31:1748–1756

    Article  PubMed  CAS  Google Scholar 

  • Kunath T, Arnaud D, Uy GD, Okamoto I, Chureau C, Yamanaka Y, Heard E, Gardner RL, Avner P, Rossant J (2005) Imprinted X-inactivation in extra-embryonic endoderm cell lines from mouse blastocysts. Development 132:1649–1661

    Article  PubMed  CAS  Google Scholar 

  • Lee JT (2000) Disruption of imprinted X inactivation by parent-of-origin effects at Tsix. Cell 103:17–27

    Article  PubMed  CAS  Google Scholar 

  • Lee JT (2009) Lessons from X-chromosome inactivation: long ncRNA as guides and tethers to the epigenome. Genes Dev 23:1831–1842

    Article  PubMed  CAS  Google Scholar 

  • Lee JT, Lu N (1999) Targeted mutagenesis of Tsix leads to nonrandom X inactivation. Cell 99:47–57

    Article  PubMed  CAS  Google Scholar 

  • Lengner CJ, Gimelbrant AA, Erwin JA, Cheng AW, Guenther MG, Welstead GG, Alagappan R, Frampton GM, Xu P, Muffat J, Santagata S, Powers D, Barrett CB, Young RA, Lee JT, Jaenisch R, Mitalipova M (2010) Derivation of pre-X inactivation human embryonic stem cells under physiological oxygen concentrations. Cell 141:872–883

    Article  PubMed  CAS  Google Scholar 

  • Lyon MF (1961) Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190:372–373

    Article  PubMed  CAS  Google Scholar 

  • Lyon MF (1998) X-chromosome inactivation: a repeat hypothesis. Cytogenet Cell Genet 80:133–137

    Article  PubMed  CAS  Google Scholar 

  • Maenner S, Blaud M, Fouillen L, Savoye A, Marchand V, Dubois A, Sanglier-Cianferani S, Van Dorsselaer A, Clerc P, Avner P, Visvikis A, Branlant C (2010) 2-D structure of the A region of Xist RNA and its implication for PRC2 association. PLoS Biol 8:e1000276

    Article  PubMed  CAS  Google Scholar 

  • Mahadevaiah SK, Royo H, VandeBerg JL, McCarrey JR, Mackay S, Turner JM (2009) Key features of the X inactivation process are conserved between marsupials and eutherians. Curr Biol 19:1478–1484

    Article  PubMed  CAS  Google Scholar 

  • Maherali N, Sridharan R, Xie W, Utikal J, Eminli S, Arnold K, Stadtfeld M, Yachechko R, Tchieu J, Jaenisch R, Plath K, Hochedlinger K (2007) Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1:55–70

    Article  PubMed  CAS  Google Scholar 

  • Mak W, Baxter J, Silva J, Newall AE, Otte AP, Brockdorff N (2002) Mitotically stable association of polycomb group proteins eed and enx1 with the inactive x chromosome in trophoblast stem cells. Curr Biol 12:1016–1020

    Article  PubMed  CAS  Google Scholar 

  • Mak W, Nesterova TB, de Napoles M, Appanah R, Yamanaka S, Otte AP, Brockdorff N (2004) Reactivation of the paternal X chromosome in early mouse embryos. Science 303:666–669

    Article  PubMed  CAS  Google Scholar 

  • Marahrens Y, Panning B, Dausman J, Strauss W, Jaenisch R (1997) Xist-deficient mice are defective in dosage compensation but not spermatogenesis. Genes Dev 11:156–166

    Article  PubMed  CAS  Google Scholar 

  • McCarrey JR, Watson C, Atencio J, Ostermeier GC, Marahrens Y, Jaenisch R, Krawetz SA (2002) X-chromosome inactivation during spermatogenesis is regulated by an Xist/Tsix-independent mechanism in the mouse. Genesis 34:257–266

    Article  PubMed  CAS  Google Scholar 

  • McKee BD, Handel MA (1993) Sex chromosomes, recombination, and chromatin conformation. Chromosoma 102:71–80

    Article  PubMed  CAS  Google Scholar 

  • Moens PB, Tarsounas M, Morita T, Habu T, Rottinghaus ST, Freire R, Jackson SP, Barlow C, Wynshaw-Boris A (1999) The association of ATR protein with mouse meiotic chromosome cores. Chromosoma 108:95–102

    Article  PubMed  CAS  Google Scholar 

  • Moretto-Zita M, Jin H, Shen Z, Zhao T, Briggs SP, Xu Y (2010) Phosphorylation stabilizes Nanog by promoting its interaction with Pin1. Proc Natl Acad Sci USA 107:13312–13317

    Article  PubMed  CAS  Google Scholar 

  • Mueller JL, Mahadevaiah SK, Park PJ, Warburton PE, Page DC, Turner JM (2008) The mouse X chromosome is enriched for multicopy testis genes showing postmeiotic expression. Nat Genet 40:794–799

    Article  PubMed  CAS  Google Scholar 

  • Murakami K, Araki K, Ohtsuka S, Wakayama T, Niwa H (2010) Choice of random rather than imprinted X inactivation in female embryonic stem cell-derived extra-embryonic cells. Development 138:197–202

    Article  PubMed  CAS  Google Scholar 

  • Namekawa SH, Lee JT (2009) XY and ZW: is meiotic sex chromosome inactivation the rule in evolution? PLoS Genet 5:e1000493

    Article  PubMed  CAS  Google Scholar 

  • Namekawa SH, Lee JT (2011) Detection of nascent RNA, single-copy DNA, and protein localization by immunoFISH in murine germ cells and pre-implantation embryos. Nat Protoc 6:270–284

    Google Scholar 

  • Namekawa SH, Park PJ, Zhang LF, Shima JE, McCarrey JR, Griswold MD, Lee JT (2006) Postmeiotic sex chromatin in the male germline of mice. Curr Biol 16:660–667

    Article  PubMed  CAS  Google Scholar 

  • Namekawa SH, VandeBerg JL, McCarrey JR, Lee JT (2007) Sex chromosome silencing in the marsupial male germ line. Proc Natl Acad Sci USA 104:9730–9735

    Article  PubMed  CAS  Google Scholar 

  • Namekawa SH, Payer B, Huynh KD, Jaenisch R, Lee JT (2010) Two-step imprinted X inactivation: repeat versus genic silencing in the mouse. Mol Cell Biol 30:3187–3205

    Article  PubMed  CAS  Google Scholar 

  • Navarro P, Chambers I, Karwacki-Neisius V, Chureau C, Morey C, Rougeulle C, Avner P (2008) Molecular coupling of Xist regulation and pluripotency. Science 321:1693–1695

    Article  PubMed  CAS  Google Scholar 

  • Navarro P, Oldfield A, Legoupi J, Festuccia N, Dubois A, Attia M, Schoorlemmer J, Rougeulle C, Chambers I, Avner P (2010) Molecular coupling of Tsix regulation and pluripotency. Nature 468:457–460

    Article  PubMed  CAS  Google Scholar 

  • Navarro P, Moffat M, Mullin NP, Chambers I (2011) The X-inactivation trans-activator Rnf12 is negatively regulated by pluripotency factors in embryonic stem cells. Hum Genet. doi:10.1007/s00439-011-0998-5

  • Nesterova TB, Johnston CM, Appanah R, Newall AE, Godwin J, Alexiou M, Brockdorff N (2003) Skewing X chromosome choice by modulating sense transcription across the Xist locus. Genes Dev 17:2177–2190

    Article  PubMed  CAS  Google Scholar 

  • Nichols J, Smith A (2009) Naive and primed pluripotent states. Cell Stem Cell 4:487–492

    Article  PubMed  CAS  Google Scholar 

  • Niwa H, Toyooka Y, Shimosato D, Strumpf D, Takahashi K, Yagi R, Rossant J (2005) Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation. Cell 123:917–929

    Article  PubMed  CAS  Google Scholar 

  • Nolen LD, Gao S, Han Z, Mann MR, Gie Chung Y, Otte AP, Bartolomei MS, Latham KE (2005) X chromosome reactivation and regulation in cloned embryos. Dev Biol 279:525–540

    Article  PubMed  CAS  Google Scholar 

  • Okamoto I, Heard E (2009) Lessons from comparative analysis of X-chromosome inactivation in mammals. Chromosome Res 17:659–669

    Article  PubMed  CAS  Google Scholar 

  • Okamoto I, Tan S, Takagi N (2000) X-chromosome inactivation in XX androgenetic mouse embryos surviving implantation. Development 127:4137–4145

    PubMed  CAS  Google Scholar 

  • Okamoto I, Otte AP, Allis CD, Reinberg D, Heard E (2004) Epigenetic dynamics of imprinted X inactivation during early mouse development. Science 303:644–649

    Article  PubMed  CAS  Google Scholar 

  • Okamoto I, Arnaud D, Le Baccon P, Otte AP, Disteche CM, Avner P, Heard E (2005) Evidence for de novo imprinted X-chromosome inactivation independent of meiotic inactivation in mice. Nature 438:369–373

    Article  PubMed  CAS  Google Scholar 

  • Okamoto I, Patrat C, Thepot D, Peynot N, Fauque P, Daniel N, Diabangouaya P, Wolf JP, Renard JP, Duranthon V, Heard E (2011) Eutherian mammals use diverse strategies to initiate X-chromosome inactivation during development. Nature 472:370–374

    Article  PubMed  CAS  Google Scholar 

  • Patrat C, Okamoto I, Diabangouaya P, Vialon V, Le Baccon P, Chow J, Heard E (2009) Dynamic changes in paternal X-chromosome activity during imprinted X-chromosome inactivation in mice. Proc Natl Acad Sci USA 106:5198–5203

    Article  PubMed  CAS  Google Scholar 

  • Payer B, Lee JT (2008) X chromosome dosage compensation: how mammals keep the balance. Annu Rev Genet 42:733–772

    Article  PubMed  CAS  Google Scholar 

  • Perera D, Perez-Hidalgo L, Moens PB, Reini K, Lakin N, Syvaoja JE, San-Segundo PA, Freire R (2004) TopBP1 and ATR colocalization at meiotic chromosomes: role of TopBP1/Cut5 in the meiotic recombination checkpoint. Mol Biol Cell 15:1568–1579

    Article  PubMed  CAS  Google Scholar 

  • Plath K, Lowry WE (2011) Progress in understanding reprogramming to the induced pluripotent state. Nat Rev Genet 12:253–265

    Article  PubMed  CAS  Google Scholar 

  • Plath K, Fang J, Mlynarczyk-Evans SK, Cao R, Worringer KA, Wang H, de la Cruz CC, Otte AP, Panning B, Zhang Y (2003) Role of histone H3 lysine 27 methylation in X inactivation. Science 300:131–135

    Article  PubMed  CAS  Google Scholar 

  • Rastan S (1982) Timing of X-chromosome inactivation in postimplantation mouse embryos. J Embryol Exp Morphol 71:11–24

    PubMed  CAS  Google Scholar 

  • Reini K, Uitto L, Perera D, Moens PB, Freire R, Syvaoja JE (2004) TopBP1 localises to centrosomes in mitosis and to chromosome cores in meiosis. Chromosoma 112:323–330

    Article  PubMed  CAS  Google Scholar 

  • Rens W, Wallduck MS, Lovell FL, Ferguson-Smith MA, Ferguson-Smith AC (2010) Epigenetic modifications on X chromosomes in marsupial and monotreme mammals and implications for evolution of dosage compensation. Proc Natl Acad Sci USA 107:17657–17662

    Article  PubMed  CAS  Google Scholar 

  • Sado T, Fenner MH, Tan SS, Tam P, Shioda T, Li E (2000) X inactivation in the mouse embryo deficient for Dnmt1: distinct effect of hypomethylation on imprinted and random X inactivation. Dev Biol 225:294–303

    Article  PubMed  CAS  Google Scholar 

  • Schimenti J (2005) Synapsis or silence. Nat Genet 37:11–13

    Article  PubMed  CAS  Google Scholar 

  • Seki Y, Hayashi K, Itoh K, Mizugaki M, Saitou M, Matsui Y (2005) Extensive and orderly reprogramming of genome-wide chromatin modifications associated with specification and early development of germ cells in mice. Dev Biol 278:440–458

    Article  PubMed  CAS  Google Scholar 

  • Seki Y, Yamaji M, Yabuta Y, Sano M, Shigeta M, Matsui Y, Saga Y, Tachibana M, Shinkai Y, Saitou M (2007) Cellular dynamics associated with the genome-wide epigenetic reprogramming in migrating primordial germ cells in mice. Development 134:2627–2638

    Article  PubMed  CAS  Google Scholar 

  • Senner CE, Nesterova TB, Norton S, Dewchand H, Godwin J, Mak W, Brockdorff N (2011) Disruption of a conserved region of Xist exon 1 impairs Xist RNA localisation and X-linked gene silencing during random and imprinted X chromosome inactivation. Development 138:1541–1550

    Article  PubMed  CAS  Google Scholar 

  • Sharman GB (1971) Late DNA replication in the paternally derived X chromosome of female kangaroos. Nature 230:231–232

    Article  PubMed  CAS  Google Scholar 

  • Shen Y, Matsuno Y, Fouse SD, Rao N, Root S, Xu R, Pellegrini M, Riggs AD, Fan G (2008) X-inactivation in female human embryonic stem cells is in a nonrandom pattern and prone to epigenetic alterations. Proc Natl Acad Sci USA 105:4709–4714

    Article  PubMed  CAS  Google Scholar 

  • Shimosato D, Shiki M, Niwa H (2007) Extra-embryonic endoderm cells derived from ES cells induced by GATA factors acquire the character of XEN cells. BMC Dev Biol 7:80

    Article  PubMed  CAS  Google Scholar 

  • Shin J, Bossenz M, Chung Y, Ma H, Byron M, Taniguchi-Ishigaki N, Zhu X, Jiao B, Hall LL, Green MR, Jones SN, Hermans-Borgmeyer I, Lawrence JB, Bach I (2010) Maternal Rnf12/RLIM is required for imprinted X-chromosome inactivation in mice. Nature 467:977–981

    Article  PubMed  CAS  Google Scholar 

  • Shovlin TC, Durcova-Hills G, Surani A, McLaren A (2008) Heterogeneity in imprinted methylation patterns of pluripotent embryonic germ cells derived from pre-migratory mouse germ cells. Dev Biol 313:674–681

    Article  PubMed  CAS  Google Scholar 

  • Silva J, Mak W, Zvetkova I, Appanah R, Nesterova TB, Webster Z, Peters AH, Jenuwein T, Otte AP, Brockdorff N (2003) Establishment of histone h3 methylation on the inactive X chromosome requires transient recruitment of Eed-Enx1 polycomb group complexes. Dev Cell 4:481–495

    Article  PubMed  CAS  Google Scholar 

  • Silva J, Chambers I, Pollard S, Smith A (2006) Nanog promotes transfer of pluripotency after cell fusion. Nature 441:997–1001

    Article  PubMed  CAS  Google Scholar 

  • Silva SS, Rowntree RK, Mekhoubad S, Lee JT (2008) X-chromosome inactivation and epigenetic fluidity in human embryonic stem cells. Proc Natl Acad Sci USA 105:4820–4825

    Article  PubMed  CAS  Google Scholar 

  • Silva J, Nichols J, Theunissen TW, Guo G, van Oosten AL, Barrandon O, Wray J, Yamanaka S, Chambers I, Smith A (2009) Nanog is the gateway to the pluripotent ground state. Cell 138:722–737

    Article  PubMed  CAS  Google Scholar 

  • Song R, Ro S, Michaels JD, Park C, McCarrey JR, Yan W (2009) Many X-linked microRNAs escape meiotic sex chromosome inactivation. Nat Genet 41:488–493

    Article  PubMed  CAS  Google Scholar 

  • Stadtfeld M, Hochedlinger K (2010) Induced pluripotency: history, mechanisms, and applications. Genes Dev 24:2239–2263

    Article  PubMed  CAS  Google Scholar 

  • Stadtfeld M, Maherali N, Breault DT, Hochedlinger K (2008) Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell 2:230–240

    Article  PubMed  CAS  Google Scholar 

  • Stadtfeld M, Apostolou E, Akutsu H, Fukuda A, Follett P, Natesan S, Kono T, Shioda T, Hochedlinger K (2010) Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells. Nature 465:175–181

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto M, Abe K (2007) X chromosome reactivation initiates in nascent primordial germ cells in mice. PLoS Genet 3:e116

    Article  PubMed  CAS  Google Scholar 

  • Tada M, Tada T, Lefebvre L, Barton SC, Surani MA (1997) Embryonic germ cells induce epigenetic reprogramming of somatic nucleus in hybrid cells. EMBO J 16:6510–6520

    Article  PubMed  CAS  Google Scholar 

  • Tada T, Obata Y, Tada M, Goto Y, Nakatsuji N, Tan S, Kono T, Takagi N (2000) Imprint switching for non-random X-chromosome inactivation during mouse oocyte growth. Development 127:3101–3105

    PubMed  CAS  Google Scholar 

  • Tada M, Takahama Y, Abe K, Nakatsuji N, Tada T (2001) Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr Biol 11:1553–1558

    Article  PubMed  CAS  Google Scholar 

  • Takagi N, Sugawara O, Sasaki M (1982) Regional and temporal changes in the pattern of X-chromosome replication during the early post-implantation development of the female mouse. Chromosoma 85:275–286

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  PubMed  CAS  Google Scholar 

  • Tchieu J, Kuoy E, Chin MH, Trinh H, Patterson M, Sherman SP, Aimiuwu O, Lindgren A, Hakimian S, Zack JA, Clark AT, Pyle AD, Lowry WE, Plath K (2010) Female human iPSCs retain an inactive X chromosome. Cell Stem Cell 7:329–342

    Article  PubMed  CAS  Google Scholar 

  • Tesar PJ, Chenoweth JG, Brook FA, Davies TJ, Evans EP, Mack DL, Gardner RL, McKay RD (2007) New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448:196–199

    Article  PubMed  CAS  Google Scholar 

  • Tian D, Sun S, Lee JT (2010) The long noncoding RNA, Jpx, is a molecular switch for X chromosome inactivation. Cell 143:390–403

    Article  PubMed  CAS  Google Scholar 

  • Turner JM (2007) Meiotic sex chromosome inactivation. Development 134:1823–1831

    Article  PubMed  CAS  Google Scholar 

  • Turner JM, Mahadevaiah SK, Elliott DJ, Garchon HJ, Pehrson JR, Jaenisch R, Burgoyne PS (2002) Meiotic sex chromosome inactivation in male mice with targeted disruptions of Xist. J Cell Sci 115:4097–4105

    Article  PubMed  CAS  Google Scholar 

  • Turner JM, Aprelikova O, Xu X, Wang R, Kim S, Chandramouli GV, Barrett JC, Burgoyne PS, Deng CX (2004) BRCA1, histone H2AX phosphorylation, and male meiotic sex chromosome inactivation. Curr Biol 14:2135–2142

    Article  PubMed  CAS  Google Scholar 

  • Turner JM, Mahadevaiah SK, Fernandez-Capetillo O, Nussenzweig A, Xu X, Deng CX, Burgoyne PS (2005) Silencing of unsynapsed meiotic chromosomes in the mouse. Nat Genet 37:41–47

    PubMed  CAS  Google Scholar 

  • Turner JM, Mahadevaiah SK, Ellis PJ, Mitchell MJ, Burgoyne PS (2006) Pachytene asynapsis drives meiotic sex chromosome inactivation and leads to substantial postmeiotic repression in spermatids. Dev Cell 10:521–529

    Article  PubMed  CAS  Google Scholar 

  • van den Berg IM, Laven JS, Stevens M, Jonkers I, Galjaard RJ, Gribnau J, van Doorninck JH (2009) X chromosome inactivation is initiated in human preimplantation embryos. Am J Hum Genet 84:771–779

    Article  PubMed  CAS  Google Scholar 

  • van der Heijden GW, Derijck AA, Posfai E, Giele M, Pelczar P, Ramos L, Wansink DG, van der Vlag J, Peters AH, de Boer P (2007) Chromosome-wide nucleosome replacement and H3.3 incorporation during mammalian meiotic sex chromosome inactivation. Nat Genet 39:251–258

    Article  PubMed  CAS  Google Scholar 

  • Williams LH, Kalantry S, Starmer J, Magnuson T (2011) Transcription precedes loss of Xist coating and depletion of H3K27me3 during X-chromosome reprogramming in the mouse inner cell mass. Development 138:2049–2057

    Article  PubMed  CAS  Google Scholar 

  • Wu T, Wang H, He J, Kang L, Jiang Y, Liu J, Zhang Y, Kou Z, Liu L, Zhang X, Gao S (2011) Reprogramming of trophoblast stem cells into pluripotent stem cells by Oct4. Stem Cells 29:755–763

    Article  PubMed  CAS  Google Scholar 

  • Wutz A, Rasmussen TP, Jaenisch R (2002) Chromosomal silencing and localization are mediated by different domains of Xist RNA. Nat Genet 30:167–174

    Article  PubMed  CAS  Google Scholar 

  • Xu HM, Liao B, Zhang QJ, Wang BB, Li H, Zhong XM, Sheng HZ, Zhao YX, Zhao YM, Jin Y (2004) Wwp2, an E3 ubiquitin ligase that targets transcription factor Oct-4 for ubiquitination. J Biol Chem 279:23495–23503

    Article  PubMed  CAS  Google Scholar 

  • Yan W, McCarrey JR (2009) Sex chromosome inactivation in the male. Epigenetics 4:452–456

    Article  PubMed  CAS  Google Scholar 

  • Zakharova IS, Shevchenko AI, Shilov AG, Nesterova TB, Vandeberg JL, Zakian SM (2011) Histone H3 trimethylation at lysine 9 marks the inactive metaphase X chromosome in the marsupial Monodelphis domestica. Chromosoma 120:177–183

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Sun BK, Erwin JA, Song JJ, Lee JT (2008) Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322:750–756

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Yuya Ogawa, Yesu Jeon and Ho-Su Sin for critical reading and Erin L. Adams for editing of the manuscript. This work was supported by a fellowship of the International Human Frontier Science Program Organization (HFSP) to B.P., an NIH grant (RO1-GM58839) to J.T.L, and the Developmental Fund and Trustee Grant at Cincinnati Children’s Hospital Medical Center to S.H.N. J.T.L. is an investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bernhard Payer or Satoshi H. Namekawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Payer, B., Lee, J.T. & Namekawa, S.H. X-inactivation and X-reactivation: epigenetic hallmarks of mammalian reproduction and pluripotent stem cells. Hum Genet 130, 265–280 (2011). https://doi.org/10.1007/s00439-011-1024-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-011-1024-7

Keywords

Navigation