Skip to main content

Advertisement

Log in

Specification of midbrain territory

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The vertebrate neural plate is subdivided into four distinct territories comprising the presumptive forebrain, midbrain, hindbrain, and the spinal cord, shortly after gastrulation. Initially, this subdivision relies on a defined pattern of expression of distinct transcription and secreted factors within the newly formed neuroectoderm, even before morphological partitioning is evident. Subdivision of the neural plate into distinct territories is a complex process, which is also known as patterning or regionalisation, and involves both planar and vertical signals coming from within the neuroectoderm and from neighbouring non-neural tissues. During the course of embryogenesis, this gross subdivision of the neural plate is progressively refined by a variety of mechanisms, leading to the establishment of various subdomains that ultimately give rise to specific cell populations characteristic for the corresponding brain and spinal cord regions. Once again, a prominent feature of these later processes is the defined expression of specific genes within the developing neural tube. In the present review, we will concentrate on the genes active in the progressive refinement of the midbrain territory as a distinct subdivision of the brain. We will also give an outlook on genes that are active during early induction of the anterior neural plate and genetic mechanisms that control the generation of specific cell populations of the ventral midbrain, with special focus on the mesencephalic dopaminergic neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2a–c
Fig. 3a–g

Similar content being viewed by others

References

  • Acampora D, Mazan S, Lallemand Y, Avantaggiato V, Maury M, Simeone A, Brûlet, P (1995) Forebrain and midbrain regions are deleted in Otx2−/− mutants due to a defective anterior neuroectoderm specification during gastrulation. Development 121:3279–3290

    CAS  PubMed  Google Scholar 

  • Acampora D, Avantaggiato V, Tuorto F, Simeone A (1997) Genetic control of brain morphogenesis through Otx gene dosage requirement. Development 124:3639–3650

    CAS  PubMed  Google Scholar 

  • Acampora D, Avantaggiato V, Tuorto F, Briata P, Corte G, Simeone A (1998) Visceral endoderm-restricted translation of Otx1 mediates recovery of Otx2 requirements for specification of anterior neural plate and normal gastrulation. Development 125:5091–5104

    CAS  PubMed  Google Scholar 

  • Acampora D, Gulisano M, Broccoli V, Simeone A (2001) Otx genes in brain morphogenesis. Prog Neurobiol 64:69–95

    Article  CAS  PubMed  Google Scholar 

  • Allen T, Lobe CG (1999) A comparison of Notch, Hes and Grg expression during murine embryonic and post-natal development. Cell Mol Biol 45:687–708

    CAS  Google Scholar 

  • Ang S-L, Jin O, Rhinn M, Daigle N, Stevenson L, Rossant J (1996) A targeted mouse Otx2 mutation leads to severe defects in gastrulation and formation of axial mesoderm and to deletion of rostral brain. Development 122:243–252

    CAS  PubMed  Google Scholar 

  • Asano M, Gruss P (1992) Pax-5 is expressed at the midbrain–hindbrain boundary during mouse development. Mech Dev 39:29–39

    Article  CAS  PubMed  Google Scholar 

  • Bouchard M, Pfeffer P, Busslinger M (2000) Functional equivalence of the transcription factors Pax2 and Pax5 in mouse development. Development 127:3703–3713

    CAS  PubMed  Google Scholar 

  • Britto J, Tannahill D, Keynes R (2002) A critical role for sonic hedgehog signaling in the early expansion of the developing brain. Nat Neurosci 5:103–110

    Article  CAS  PubMed  Google Scholar 

  • Broccoli V, Boncinelli E, Wurst W (1999) The caudal limit of Otx2 expression positions the isthmic organizer. Nature 401:164–168

    Article  CAS  PubMed  Google Scholar 

  • Brodski C, Vogt Weisenhorn DM, Signore M, Sillaber I, Oesterheld M, Broccoli V, Acampora D, Simeone A, Wurst W (2003) Location and size of dopaminergic and serotonergic cell populations are controlled by the position of the midbrain–hindbrain organizer. J Neurosci 23:4199–4207

    CAS  PubMed  Google Scholar 

  • Chi CL, Martinez S, Wurst W, Martin GR (2003) The isthmic organizer signal FGF8 is required for cell survival in the prospective midbrain and cerebellum. Development 130:2633–2644

    Article  CAS  PubMed  Google Scholar 

  • Crossley PH, Martin GR (1995) The mouse Fgf8 gene encodes a family of polypeptides and is expressed in regions that direct outgrowth and patterning in the developing embryo. Development 121:439–451

    CAS  PubMed  Google Scholar 

  • Crossley PH, Martinez S, Martin GR (1996) Midbrain development induced by FGF8 in the chick embryo. Nature 380:66–68

    Article  CAS  PubMed  Google Scholar 

  • Danielian PS, McMahon AP (1996) Engrailed-1 as a target of the Wnt-1 signalling pathway in vertebrate midbrain development. Nature 383:332–334

    Article  CAS  PubMed  Google Scholar 

  • Davis CA, Joyner AL (1988) Expression patterns of the homeobox containing genes En1 and En2 and the proto-oncogene int-1 diverge during mouse development. Genes Dev 2:1736–1744

    CAS  PubMed  Google Scholar 

  • Davis CA, Noble-Topham SE, Rossant J, Joyner AL (1988) Expression of the homeobox-containing gene En2 delineates a specific region of the developing mouse brain. Genes Dev 2:361–371

    CAS  PubMed  Google Scholar 

  • Ding J, Yang L, Yam Y-T, Chen A, Desai N, Wynshaw-Boris A, Shen MM (1998) Cripto is required for correct orientation of the anterior–posterior axis in the mouse embryo. Nature 395:702–707

    Article  CAS  PubMed  Google Scholar 

  • Garda A-L, Echevarria D, Martinez S (2001) Neuroepithelial co-expression of Gbx2 and Otx2 precedes Fgf8 expression in the isthmic organizer. Mech Dev 101:111–118

    Article  CAS  PubMed  Google Scholar 

  • Hirata H, Tomita K, Bessho Y, Kageyama R (2001) Hes1 and Hes3 regulate maintenance of the isthmic organizer and development of the mid/hindbrain. EMBO J 20:4454–4466

    Article  CAS  PubMed  Google Scholar 

  • Ishibashi M, McMahon AP (2002) A sonic hedgehog-dependent signaling relay regulates growth of diencephalic and mesencephalic primordia in the early mouse embryo. Development 129:4807–4819

    CAS  PubMed  Google Scholar 

  • Jessell TM (2000) Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat Rev Genet 1:20–29

    Article  CAS  PubMed  Google Scholar 

  • Lee SMK, Danielian PS, Fritzsch B, McMahon AP (1997) Evidence that FGF8 signalling from the midbrain–hindbrain junction regulates growth and polarity in the developing midbrain. Development 124:959–969

    CAS  PubMed  Google Scholar 

  • Li JYH, Joyner AL (2001) Otx2 and Gbx2 are required for refinement and not induction of mid-hindbrain gene expression. Development 128:4979–4991

    CAS  PubMed  Google Scholar 

  • Li JYH, Lao Z, Joyner AL (2002) Changing requirements for Gbx2 in development of the cerebellum and maintenance of the mid/hindbrain organizer. Neuron 36:31–43

    Article  CAS  PubMed  Google Scholar 

  • Liguori GL, Echevarria D, Improta R, Signore M, Adamson E, Martinez S, Persico MG (2003) Anterior neural plate regionalization in cripto null mutant mouse embryos in the absence of node and primitive streak. Dev Biol 264:537–549

    Article  CAS  PubMed  Google Scholar 

  • Liu A, Joyner AL (2001a) Early anterior/posterior patterning of the midbrain and cerebellum. Annu Rev Neurosci 24:869–896

    Article  CAS  PubMed  Google Scholar 

  • Liu A, Joyner AL (2001b) EN and GBX2 play essential roles downstream of FGF8 in patterning the mouse mid/hindbrain region. Development 128:181–191

    CAS  PubMed  Google Scholar 

  • Liu A, Losos K, Joyner AL (1999) FGF8 can activate Gbx2 and transform regions of the rostral mouse brain into a hindbrain fate. Development 126:4827–4838

    CAS  PubMed  Google Scholar 

  • Liu A, Li JYH, Bromleigh C, Lao Z, Niswander LA, Joyner AL (2003) FGF17b and FGF18 have different midbrain regulatory properties from FGF8b or activated FGF receptors. Development 130:6175–6185

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Xu J, Colvin JS, Ornitz DM (2002) Coordination of chondrogenesis and osteogenesis by fibroblast growth factor 18. Genes Dev 16:859–869

    Article  CAS  PubMed  Google Scholar 

  • Martinez S, Wassef M, Alvarado-Mallart R-M (1991) Induction of a mesencephalic phenotype in the 2-day old chick prosencephalon is preceded by the early expression of the homeobox gene En. Neuron 6:971–981

    Article  CAS  PubMed  Google Scholar 

  • Martinez S, Marin F, Nieto MA, Puelles L (1995) Induction of ectopic Engrailed expression and fate change in avian rhombomeres: intersegmental boundaries as barriers. Mech Dev 51:289–303

    Article  CAS  PubMed  Google Scholar 

  • Martinez S, Crossley PH, Cobos I, Rubenstein JL, Martin GR (1999) FGF8 induces formation of an ectopic isthmic organizer and isthmocerebellar development via a repressive effect on Otx2 expression. Development 126:1189–1200

    CAS  PubMed  Google Scholar 

  • Martinez-Barbera JP, Signore M, Boyl PP, Puelles E, Acampora D, Gogoi R, Schubert F, Lumsden A, Simeone A (2001) Regionalisation of anterior neuroectoderm and its competence in responding to forebrain and midbrain inducing activities depend on mutual antagonism between OTX2 and GBX2. Development 128:4789–4800

    CAS  PubMed  Google Scholar 

  • Maruoka Y, Ohbayashi N, Hoshikawa M, Itoh N, Hogan BM, Furuta Y (1998) Comparison of the expression of three highly related genes, Fgf8, Fgf17 and Fgf18, in the mouse embryo. Mech Dev 74:175–177

    Article  CAS  PubMed  Google Scholar 

  • Mastick GS, Fan CM, Tessier-Lavigne M, Serbedzija GN, McMahon AP, Easter SS Jr (1996) Early deletion of neuromeres in Wnt-1−/− mutant mice: evaluation by morphological and molecular markers. J Comp Neurol 374:246–258

    Article  CAS  PubMed  Google Scholar 

  • Matsuo I, Kuratani S, Kimura C, Takeda N, Aizawa S (1995) Mouse Otx2 functions in the formation and patterning of rostral head. Genes Dev 9:2646–2658

    CAS  PubMed  Google Scholar 

  • McMahon AP, Bradley A (1990) The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell 62:1073–1085

    Article  CAS  PubMed  Google Scholar 

  • McMahon AP, Joyner AL, Bradley A, McMahon JA (1992) The midbrain–hindbrain phenotype of Wnt-1-/Wnt-1-mice results from stepwise deletion of engrailed-expressing cells by 95 days postcoitum. Cell 69:581–595

    Article  CAS  PubMed  Google Scholar 

  • Millen KJ, Wurst W, Herrup K, Joyner AL (1994) Abnormal embryonic cerebellar development and patterning of postnatal foliation in two mouse Engrailed-2 mutants. Development 120:695–706

    CAS  PubMed  Google Scholar 

  • Millet S, Campbell K, Epstein DJ, Losos K, Harris H, Joyner AL (1999) A role for Gbx2 in repression of Otx2 and positioning the mid-hindbrain organizer. Nature 401:161–164

    Article  CAS  PubMed  Google Scholar 

  • Minowada G, Jarvis LA, Chi CL, Neubuser A, Sun X, Hacohen N, Krasnow MA, Martin GR (1999) Vertebrate Sprouty genes are induced by FGF signalling and can cause chondrodysplasia when overexpressed. Development 126:4465–4475

    CAS  PubMed  Google Scholar 

  • Ohbayashi N, Shibayama M, Kurotaki Y, Imanishi M, Fujimori T, Itoh N, Takada S (2002) FGF18 is required for normal cell proliferation and differentiation during osteogenesis and chondrogenesis. Genes Dev 16:870–879

    Article  CAS  PubMed  Google Scholar 

  • Panhuysen M, Vogt Weisenhorn DM, Blanquet V, Brodski C, Heinzmann U, Beisker W, Wurst W (2004) Effects of Wnt1 signaling on proliferation in the developing mid-/hindbrain region. Mol Cell Neurosci 26:101–111

    Article  CAS  PubMed  Google Scholar 

  • Parr BA, Shea MJ, Vassileva G, McMahon AP (1993) Mouse Wnt genes exhibit discrete domains of expression in the early embryonic CNS and limb buds. Development 119:247–261

    CAS  PubMed  Google Scholar 

  • Puelles E, Acampora D, Lacroix E, Signore M, Annino A, Tuorto F, Filosa S, Corte G, Wurst W, Ang S-L, Simeone A (2003) Otx dose-dependent integrated control of antero-posterior and dorso-ventral patterning of midbrain. Nat Neurosci 6:453–460

    CAS  PubMed  Google Scholar 

  • Puelles E, Annino A, Tuorto F, Usiello A, Acampora D, Czerny T, Brodski C, Ang S-L, Wurst W, Simeone A (2004) Otx2 regulates the extent, identity and fate of neuronal progenitor domains in the ventral midbrain. Development 131:2037–2048

    Article  CAS  PubMed  Google Scholar 

  • Rhinn M, Brand M (2001) The midbrain–hindbrain boundary organizer. Curr Opin Neurobiol 11:34–42

    Article  CAS  PubMed  Google Scholar 

  • Rhinn M, Dierich A, Shawlot W, Behringer RR, Le Meur M, Ang S-L (1998) Sequential roles for Otx2 in visceral endoderm and neuroectoderm for forebrain and midbrain induction and specification. Development 125:845–856

    CAS  PubMed  Google Scholar 

  • Rowitch DH, McMahon AP (1995) Pax-2 expression in the murine neural plate precedes and encompasses the expression domains of Wnt-1 and En-1. Mech Dev 52:3–8

    Article  CAS  PubMed  Google Scholar 

  • Sato T, Araki I, Nakamura H (2001) Inductive signal and tissue responsiveness defining the tectum and the cerebellum. Development 128:2461–2469

    CAS  PubMed  Google Scholar 

  • Schwarz M, Alvarez-Bolado G, Urbanek P, Busslinger M, Gruss P (1997) Conserved biological function between Pax-2 and Pax-5 in midbrain and cerebellum development: evidence from targeted mutations. Proc Natl Acad Sci USA 94:14518–14523

    Google Scholar 

  • Schwarz M, Alvarez-Bolado G, Dressler G, Urbanek P, Busslinger M, Gruss P (1999) Pax2/5 and Pax6 subdivide the early neural tube into three domains. Mech Dev 82:29–39

    Article  CAS  PubMed  Google Scholar 

  • Stern CD (2001) Initial patterning of the central nervous system: how many organizers? Nat Rev Neurosci 2:92–98

    Article  CAS  PubMed  Google Scholar 

  • Suda Y, Matsuo I, Aizawa S (1997) Cooperation between Otx1 and Otx2 genes in developmental patterning of rostral brain. Mech Dev 69:125–141

    Article  CAS  PubMed  Google Scholar 

  • Thomas KR, Capecchi MR (1990) Targeted disruption of the murine int-1 proto-oncogene resulting in severe abnormalities in midbrain and cerebellar development. Nature 346:847–850

    Article  CAS  PubMed  Google Scholar 

  • Trokovic R, Trokovic N, Hernesniemi S, Pirvola U, Vogt Weisenhorn DM, Rossant J, McMahon AP, Wurst W, Partanen J (2003) FGFR1 is independently required in both developing mid- and hindbrain for sustained response to isthmic signals. EMBO J 22:1811–1823

    Article  CAS  PubMed  Google Scholar 

  • Urbanek P, Wang ZQ, Fetka I, Wagner EF, Busslinger M (1994) Complete block of early B cell differentiation and altered patterning of the posterior midbrain in mice lacking Pax5/BSAP. Cell 79:901–912

    Article  CAS  PubMed  Google Scholar 

  • Walshe J, Mason I (2000) Expression of FGFR1, FGFR2 and FGFR3 during early neural development in the chick embryo. Mech Dev 90:103–110

    Article  CAS  PubMed  Google Scholar 

  • Wassarman KM, Lewandoski M, Campbell K, Joyner AL, Rubenstein JLR, Martinez S, Martin G (1997) Specification of the anterior hindbrain and establishment of a normal mid/hindbrain organizer is dependent on Gbx2 gene function. Development 124:2923–2934

    CAS  PubMed  Google Scholar 

  • Wilkinson DG, Bailes JA, McMahon AP (1987) Expression of the proto-oncogene int-1 is restricted to specific neural cells in the developing mouse embryo. Cell 59:79–88

    Article  Google Scholar 

  • Wurst W, Auerbach AB, Joyner AL (1994) Multiple developmental defects in Engrailed-1 mutant mice: an early mid-hindbrain deletion and patterning defects in forelimbs and sternum. Development 120:2065–2075

    Google Scholar 

  • Wurst W, Bally-Cuif L (2001) Neural plate patterning: upstream and downstream of the isthmic organizer. Nat Rev Neurosci 2:99–108

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Liu Z, Ornitz DM (2000) Temporal and spatial gradients of Fgf8 and Fgf17 regulate proliferation and differentiation of midline cerebellar structures. Development 127:1833–1843

    CAS  PubMed  Google Scholar 

  • Ye W, Bouchard M, Stone D, Liu X, Vella F, Lee J, Nakamura H, Ang S-L, Busslinger M, Rosenthal A (2001) Distinct regulators control the expression of the mid-hindbrain organizer signal FGF8. Nat Neurosci 4:1175–1181

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Wurst.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prakash, N., Wurst, W. Specification of midbrain territory. Cell Tissue Res 318, 5–14 (2004). https://doi.org/10.1007/s00441-004-0955-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-004-0955-x

Keywords

Navigation