Skip to main content

Advertisement

Log in

Towards an in vitro model of cystic fibrosis small airway epithelium: characterisation of the human bronchial epithelial cell line CFBE41o-

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The CFBE41o- cell line was generated by transformation of cystic fibrosis (CF) tracheo-bronchial cells with SV40 and has been reported to be homozygous for the ΔF508 mutation. A systematic characterisation of these cells, which however, is a pre-requisite for their use as an in vitro model, has not been undertaken so far. Here, we report an assessment of optimal culture conditions, the expression pattern of drug-transport-related proteins and the stability/presence of the CF transmembrane conductance regulator (CFTR) mutation in the gene and gene product over multiple passages. The CFBE41o- cell line was also compared with a wild-type airway epithelial cell line, 16HBE14o-, which served as model for bronchial epithelial cells in situ. The CFBE41o- cell line retains at least some aspects of human CF bronchial epithelial cells, such as the ability to form electrically tight cell layers with functional cell-cell contacts, when grown under immersed (but not air-interfaced) culture conditions. The cell line is homozygous for ΔF508-CFTR over multiple passages in culture and expresses a number of proteins relevant for pulmonary drug absorption (e.g. P-gp, LRP and caveolin-1). Hence, the CFBE41o- cell line should be useful for studies of CF gene transfer or alternative treatment with small drug molecules and for the gathering of further information about the disease at the cellular level, without the need for primary culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aldallal N, McNaughton EE, Manzel LJ, Richards AM, Zabner J, Ferkol TW, Look DC (2002) Inflammatory response in airway epithelial cells isolated from patients with cystic fibrosis. Am J Respir Crit Care Med 166:1248–1256

    Article  PubMed  Google Scholar 

  • Andersson C, Servetnyk Z, Roomans GM (2003) Activation of CFTR by genistein in human airway epithelial cell lines. Biochem Biophys Res Commun 308:518–522

    Article  PubMed  CAS  Google Scholar 

  • Boucher RC (2002) An overview of the pathogenesis of cystic fibrosis lung disease. Adv Drug Deliv Rev 54:1359–1371

    Article  PubMed  CAS  Google Scholar 

  • Bruscia E, Sangiuolo F, Sinibaldi P, Goncz KK, Novelli G, Gruenert DC (2002) Isolation of CF cell lines corrected at DeltaF508-CFTR locus by SFHR-mediated targeting. Gene Ther 9:683–685

    Article  PubMed  CAS  Google Scholar 

  • Cozens AL, Yezzi MJ, Chin L, Simon EM, Finkbeiner WE, Wagner JA, Gruenert DC (1992) Characterization of immortal cystic fibrosis tracheobronchial gland epithelial cells. Proc Natl Acad Sci U S A 89:5171–5175

    Article  PubMed  CAS  Google Scholar 

  • Cozens AL, Yezzi MJ, Kunzelmann K, Ohrui T, Chin L, Eng K, Finkbeiner WE, Widdicombe JH, Gruenert DC (1994) CFTR expression and chloride secretion in polarized immortal human bronchial epithelial cells. Am J Respir Cell Mol Biol 10:38–47

    PubMed  CAS  Google Scholar 

  • Dorscheid DR, Conforti AE, Hamann KJ, Rabe KF, White SR (1999) Characterization of cell surface lectin-binding patterns of human airway epithelium. Histochem J 31:145–151

    Article  PubMed  CAS  Google Scholar 

  • Dragomir A, Hjelte L, Hagenfeldt L, Roomans GM (2004) Heparin can improve the viability of transfected cystic fibrosis cell lines in vitro. Life Sci 75:2203–2216

    Article  PubMed  CAS  Google Scholar 

  • Ehrhardt C, Kneuer C, Fiegel J, Hanes J, Schaefer UF, Kim KJ, Lehr CM (2002) Influence of apical fluid volume on the development of functional intercellular junctions in the human epithelial cell line 16HBE14o-: implications for the use of this cell line as an in vitro model for bronchial drug absorption studies. Cell Tissue Res 308:391–400

    Article  PubMed  CAS  Google Scholar 

  • Ehrhardt C, Kneuer C, Laue M, Schaefer UF, Kim KJ, Lehr CM (2003) 16HBE14o- human bronchial epithelial cell layers express P-glycoprotein, lung resistance-related protein and caveolin-1. Pharm Res 20:545–551

    Article  PubMed  CAS  Google Scholar 

  • Fasbender A, Zabner J, Chillón M, Moninger TO, Puga AP, Davidson BL, Welsh MJ (1997) Complexes of adenovirus with polycationic polymers and cationic lipids increase the efficiency of gene transfer in vitro and in vivo. J Biol Chem 272:6479–6489

    Article  PubMed  CAS  Google Scholar 

  • Florea BI, Meaney C, Junginger HE, Borchard G (2002) Transfection efficiency and toxicity of polyethylenimine in differentiated Calu-3 and nondifferentiated COS-1 cell cultures. AAPS PharmSci 4:E12

    Article  PubMed  Google Scholar 

  • Fuchs S, Hollins HJ, Laue M, Schaefer UF, Roemer K, Gumbleton M, Lehr CM (2003) Differentiation of human alveolar epithelial cells in primary culture: morphological characterization and synthesis of caveolin-1 and surfactant protein-C. Cell Tissue Res 311:31–45

    Article  PubMed  Google Scholar 

  • Gelman MS, Kannegaard ES, Kopito RR (2002) A principal role for the proteasome in endoplasmic reticulum-associated degradation of misfolded intracellular cystic fibrosis transmembrane conductance regulator. J Biol Chem 277:11709–11714

    Article  PubMed  CAS  Google Scholar 

  • Goncz KK, Kunzelmann K, Xu Z, Gruenert DC (1998) Targeted replacement of normal and mutant CFTR sequences in human airway epithelial cells using DNA fragments. Hum Mol Genet 7:1913–1919

    Article  PubMed  CAS  Google Scholar 

  • Griesenbach U, Geddes DM, Alton EW (2003) Update on gene therapy for cystic fibrosis. Curr Opin Mol Ther 5:489–494

    PubMed  CAS  Google Scholar 

  • Gruenert DC, Basbaum CB, Widdicombe JH (1990) Long-term culture of normal and cystic fibrosis epithelial cells grown under serum-free conditions. In Vitro Cell Dev Biol 26:411–418

    Article  PubMed  CAS  Google Scholar 

  • Gruenert DC, Finkbeiner WE, Widdicombe JH (1995) Culture and transformation of human airway epithelial cells. Am J Physiol 268:L347–L360

    PubMed  CAS  Google Scholar 

  • Hamilton KO, Backstrom G, Yazdanian MA, Audus KL (2001) P-glycoprotein efflux pump expression and activity in Calu-3 cells. J Pharm Sci 90:647–658

    Article  PubMed  CAS  Google Scholar 

  • Jaffe A, Bush A (2001) Cystic fibrosis: review of the decade. Monaldi Arch Chest Dis 56:240–247

    PubMed  CAS  Google Scholar 

  • Jefferson DM, Valentich JD, Marini FC, Grubman SA, Iannuzzi MC, Dorkin HL, Klinger KW, Welsh MJ (1992) Expression of normal and cystic fibrosis phenotypes by continuous airway epithelial cell lines. Am J Physiol 259:L496–L505

    Google Scholar 

  • Jenkins RG, McAnulty RJ, Hart SL, Laurent GJ (2003) Pulmonary gene therapy. Realistic hope for the future, or false dawn in the promised land? Monaldi Arch Chest Dis 59:17–24

    PubMed  CAS  Google Scholar 

  • Jiand C, Finkbeiner WE, Widdicombe JH, Fang SL, Wang KX, Nietupski JB, Hehir KM, Cheng SH (1999) Restoration of cyclic adenosine monophosphate-stimulated chloride channel activity in human cystic fibrosis tracheobronchial submucosal gland cells by adenovirus-mediated and cationic lipid-mediated gene transfer. Am J Respir Cell Mol Biol 20:1107–1115

    PubMed  Google Scholar 

  • Karp PH, Moninger TO, Weber SP, Nesselhauf TS, Launspach J, Zabner J, Welsh M (1999) Developing an in vitro model of differentiated human airway epithelia: methods for establishing primary cultures. In: Wise C (ed) Epithelial cell culture protocols. Humana, Totowa, pp 115–137

    Google Scholar 

  • Lechapt-Zalcman E, Hurbain I, Lacave R, Commo F, Urban T, Antoine M, Milleron B, Bernaudin JF (1997) MDR 1-Pgp 170 expression in human bronchus. Eur Respir J 10:1837–1843

    Article  PubMed  CAS  Google Scholar 

  • Loo TW, Bartlett MC, Clarke DM (2002) Introduction of the most common cystic fibrosis mutation (delta F508) into human P-glycoprotein disrupts packing of the transmembrane segments. J Biol Chem 277:27585–27588

    Article  PubMed  CAS  Google Scholar 

  • Matsui H, Grubb BR, Tarran R, Randell SH, Gatzy JT, Davis CW, Boucher RC (1998) Evidence for periciliary liquid layer depletion, not abnormal ion composition, in the pathogenesis of cystic fibrosis airways disease. Cell 95:1005–1015

    Article  PubMed  CAS  Google Scholar 

  • Newman GR, Campbell L, von Ruhland C, Jasani B, Gumbleton M (1999) Caveolin and its cellular and subcellular immunolocalisation in lung alveolar epithelium: implications for alveolar epithelial type I cell function. Cell Tissue Res 295:111–120

    Article  PubMed  CAS  Google Scholar 

  • Roomans GM (2003) Pharmacological approaches to correcting the ion transport defect in cystic fibrosis. Am J Respir Med 2:413–431

    PubMed  CAS  Google Scholar 

  • Rosenberg MF, Kamis AB, Aleksandrov LA, Ford RC, Riordan JR (2004) Purification and crystallisation of the cystic fibrosis transmembrane conductance regulator (CFTR). J Biol Chem 279:39051–39057

    Article  PubMed  CAS  Google Scholar 

  • Rybarova S, Batekova M, Hodorova I, Mirossay A, Kluchova D, Bobrov N, Kocisova M (2001) Immunohistochemical detection of LRP protein in the normal human lung. Bratisl Lek L 102:66–72

    CAS  Google Scholar 

  • Sangiuolo F, Bruscia E, Serafino A, Nardone AM, Bonifazi E, Lais M, Gruenert DC, Novelli G (2002) In vitro correction of cystic fibrosis epithelial cell lines by small fragment homologous replacement (SFHR) technique. BMC Med Genet 3:8

    Article  PubMed  Google Scholar 

  • Tabatt K, Kneuer C, Sameti M, Olbrich C, Muller RH, Lehr CM, Bakowsky U (2004) Transfection with different colloidal systems: comparison of solid lipid nanoparticles and liposomes. J Control Release 97:321–332

    Article  PubMed  CAS  Google Scholar 

  • Tucker TA, Varga K, Bebok Z, Zsembery A, McCarty NA, Collawn JF, Schwiebert EM, Schwiebert LM (2003) Transient transfection of polarized epithelial monolayers with CFTR and reporter genes using efficacious lipids. Am J Physiol 284:C791–C804

    CAS  Google Scholar 

  • Zeitlin PL, Lu L, Rhim J, Cutting G, Stetten G, Kieffer KA, Craig R, Guggino WB (1991) A cystic fibrosis bronchial epithelial cell line: immortalization by adeno-12-SV40 infection. Am J Respir Cell Mol Biol 4:313–319

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Dieter C. Gruenert (California Pacific Medical Center, San Francisco, Calif.) for the generous gift of the CFBE41o- and 16HBE14o- cell lines, and Ms. Susanne Kossek, Ms. Birgit Leis and Mr. Roland Fuchs for their skilful technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Ehrhardt.

Additional information

C. Ehrhardt and E.-M. Collnot contributed equally to this work.

This work was supported in part by a Förderung des wissenschaftlichen Nachwuchses grant from the DPhG (C.E.) and research grants HL 38658 and HL 64365 (K.-J.K.) from the National Institutes of Health.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ehrhardt, C., Collnot, EM., Baldes, C. et al. Towards an in vitro model of cystic fibrosis small airway epithelium: characterisation of the human bronchial epithelial cell line CFBE41o-. Cell Tissue Res 323, 405–415 (2006). https://doi.org/10.1007/s00441-005-0062-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-005-0062-7

Keywords

Navigation