Skip to main content

Advertisement

Log in

Chondromodulin-I and tenomodulin are differentially expressed in the avascular mesenchyme during mouse and chick development

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Chondromodulin-I (ChM-I) and tenomodulin (TeM) are homologous angiogenesis inhibitors. We have analyzed the spatial relationships between capillary networks and the localization of these molecules during mouse and chick development. ChM-I and TeM proteins have been localized to the PECAM-1-negative avascular region: ChM-I is expressed in the avascular cartilage, whereas TeM is detectable in dense connective tissues, including tendons and ligaments. We have also examined the vasculature of chick embryos by injection with India ink and have performed in situ hybridization of the ChM-I and TeM genes. The onset of ChM-I expression is associated with chondrogenesis during mouse embryonic development. ChM-I expression is also detectable in precartilaginous or noncartilaginous avascular mesenchyme in chick embryos, including the somite, sclerotome, and heart. Hence, the expression domains of ChM-I and TeM during vertebrate development incorporate the typical avascular regions of the mesenchymal tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Azizan A, Holaday N, Neame PJ (2001) Post-translational processing of bovine chondromodulin-I. J Biol Chem 276:23632–23638

    Article  PubMed  CAS  Google Scholar 

  • Bellairs R, Osmond M (1998) The atlas of chick development. Academic Press, London

    Google Scholar 

  • Benjamin M, Ralphs JR (2000) The cell and developmental biology of tendons and ligaments. Int Rev Cytol 196:85–130

    Article  PubMed  CAS  Google Scholar 

  • Brandau O, Meindl A, Fassler R, Aszodi A (2001) A novel gene, tendin, is strongly expressed in tendons and ligaments and shows high homology with chondromodulin-I. Dev Dyn 221:72–80

    Article  PubMed  CAS  Google Scholar 

  • Dawson DW, Volpert OV, Gillis P, Crawford SE, Xu H, Benedict W, Bouck NP (1999) Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science 285:245–248

    Article  PubMed  CAS  Google Scholar 

  • Dietz UH, Ziegelmeier G, Bittner K, Bruckner P, Balling R (1999) Spatio-temporal distribution of chondromodulin-I mRNA in the chicken embryo: expression during cartilage development and formation of the heart and eye. Dev Dyn 216:233–243

    Article  PubMed  CAS  Google Scholar 

  • Docheva D, Hunziker EB, Fassler R, Brandau O (2005) Tenomodulin is necessary for tenocyte proliferation and tendon maturation. Mol Cell Biol 25:699–705

    Article  PubMed  CAS  Google Scholar 

  • Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9:669–676

    Article  PubMed  CAS  Google Scholar 

  • Funaki H, Sawaguchi S, Yaoeda K, Koyama Y, Yaoita E, Funaki S, Shirakashi M, Oshima Y, Shukunami C, Hiraki Y, Abe H, Yamamoto T (2001) Expression and localization of angiogenic inhibitory factor, chondromodulin-I, in adult rat eye. Invest Ophthalmol Vis Sci 42:1193–1200

    PubMed  CAS  Google Scholar 

  • Hallmann R, Feinberg RN, Latker CH, Sasse J, Risau W (1987) Regression of blood vessels precedes cartilage differentiation during chick limb development. Differentiation 34:98–105

    Article  PubMed  CAS  Google Scholar 

  • Hamburger V, Hamilton HL (1992) A series of normal stages in the development of the chick embryo. 1951. Dev Dyn 195:231–272

    PubMed  CAS  Google Scholar 

  • Hayami T, Shukunami C, Mitsui K, Endo N, Tokunaga K, Kondo J, Takahashi HE, Hiraki Y (1999) Specific loss of chondromodulin-I gene expression in chondrosarcoma and the suppression of tumor angiogenesis and growth by its recombinant protein in vivo. FEBS Lett 458:436–440

    Article  PubMed  CAS  Google Scholar 

  • Hiraki Y, Inoue H, Iyama K, Kamizono A, Ochiai M, Shukunami C, Iijima S, Suzuki F, Kondo J (1997) Identification of chondromodulin I as a novel endothelial cell growth inhibitor. Purification and its localization in the avascular zone of epiphyseal cartilage. J Biol Chem 272:32419–32426

    Article  PubMed  CAS  Google Scholar 

  • Hiraki Y, Shukunami C (2005) Angiogenesis inhibitors localized in hypovascular mesenchymal tissues: chondromodulin-I and tenomodulin. Connect Tissue Res 46:3–11

    Article  PubMed  CAS  Google Scholar 

  • Hiraki Y, Tanaka H, Inoue H, Kondo J, Kamizono A, Suzuki F (1991) Molecular cloning of a new class of cartilage-specific matrix, chondromodulin-I, which stimulates growth of cultured chondrocytes. Biochem Biophys Res Commun 175:971–977

    Article  PubMed  CAS  Google Scholar 

  • Hogan KA, Ambler CA, Chapman DL, Bautch VL (2004) The neural tube patterns vessels developmentally using the VEGF signaling pathway. Development 131:1503–1513

    Article  PubMed  CAS  Google Scholar 

  • Kalluri R (2003) Basement membranes: structure, assembly and role in tumour angiogenesis. Nat Rev Cancer 3:422–433

    Article  PubMed  CAS  Google Scholar 

  • Kuettner KE, Pauli BU (1983) Vascularity of cartilage. In: Hall BK (ed) Cartilage. Academic Press, New York, pp 281–312

    Google Scholar 

  • Kusafuka K, Hiraki Y, Shukunami C, Kayano T, Takemura T (2002) Cartilage-specific matrix protein, chondromodulin-I (ChM-I), is a strong angio-inhibitor in endochondral ossification of human neonatal vertebral tissues in vivo: relationship with angiogenic factors in the cartilage. Acta Histochem 104:167–175

    Article  PubMed  CAS  Google Scholar 

  • Lincoln J, Alfieri CM, Yutzey KE (2006a) BMP and FGF regulatory pathways control cell lineage diversification of heart valve precursor cells. Dev Biol 292:292–302

    Article  PubMed  CAS  Google Scholar 

  • Lincoln J, Lange AW, Yutzey KE (2006b) Hearts and bones: shared regulatory mechanisms in heart valve, cartilage, tendon, and bone development. Dev Biol 294:292–302

    Article  PubMed  CAS  Google Scholar 

  • Moses MA, Sudhalter J, Langer R (1990) Identification of an inhibitor of neovascularization from cartilage. Science 248:1408–1410

    Article  PubMed  CAS  Google Scholar 

  • Moses MA, Sudhalter J, Langer R (1992) Isolation and characterization of an inhibitor of neovascularization from scapular chondrocytes. J Cell Biol 119:475–482

    Article  PubMed  CAS  Google Scholar 

  • Moses MA, Wiederschain D, Wu I, Fernandez CA, Ghazizadeh V, Lane WS, Flynn E, Sytkowski A, Tao T, Langer R (1999) Troponin I is present in human cartilage and inhibits angiogenesis. Proc Natl Acad Sci USA 96:2645–2650

    Article  PubMed  CAS  Google Scholar 

  • Nakamichi Y, Shukunami C, Yamada T, Aihara K, Kawano H, Sato T, Nishizaki Y, Yamamoto Y, Shindo M, Yoshimura K, Nakamura T, Takahashi N, Kawaguchi H, Hiraki Y, Kato S (2003) Chondromodulin I is a bone remodeling factor. Mol Cell Biol 23:636–644

    Article  PubMed  CAS  Google Scholar 

  • Oshima Y, Shukunami C, Honda J, Nishida K, Tashiro F, Miyazaki J, Hiraki Y, Tano Y (2003) Expression and localization of tenomodulin, a transmembrane type chondromodulin-I-related angiogenesis inhibitor, in mouse eyes. Invest Ophthalmol Vis Sci 44:1814–1823

    Article  PubMed  Google Scholar 

  • Oshima Y, Sato K, Tashiro F, Miyazaki J, Nishida K, Hiraki Y, Tano Y, Shukunami C (2004) Anti-angiogenic action of the C-terminal domain of tenomodulin that shares homology with chondromodulin-I. J Cell Sci 117:2731–2744

    Article  PubMed  CAS  Google Scholar 

  • Pisani DF, Pierson PM, Massoudi A, Leclerc L, Chopard A, Marini JF, Dechesne CA (2004) Myodulin is a novel potential angiogenic factor in skeletal muscle. Exp Cell Res 292:40–50

    Article  PubMed  CAS  Google Scholar 

  • Poole TJ, Finkelstein EB, Cox CM (2001) The role of FGF and VEGF in angioblast induction and migration during vascular development. Dev Dyn 220:1–17

    Article  Google Scholar 

  • Qayyum SR, Webb S, Anderson RH, Verbeek FJ, Brown NA, Richardson MK (2001) Septation and valvar formation in the outflow tract of the embryonic chick heart. Anat Rec 264:273–283

    Article  PubMed  CAS  Google Scholar 

  • Redick SD, Bautch VL (1999) Developmental platelet endothelial cell adhesion molecule expression suggests multiple roles for a vascular adhesion molecule. Am J Pathol 154:1137–1147

    PubMed  CAS  Google Scholar 

  • Reese DE, Hall CE, Mikawa T (2004) Negative regulation of midline vascular development by the notochord. Dev Cell 6:699–708

    Article  PubMed  CAS  Google Scholar 

  • Sachdev SW, Dietz UH, Oshima Y, Lang MR, Knapik EW, Hiraki Y, Shukunami C (2001) Sequence analysis of zebrafish chondromodulin-1 and expression profile in the notochord and chondrogenic regions during cartilage morphogenesis. Mech Dev 105:157–162

    Article  PubMed  CAS  Google Scholar 

  • Shukunami C, Iyama K, Inoue H, Hiraki Y (1999a) Spatiotemporal pattern of the mouse chondromodulin-I gene expression and its regulatory role in vascular invasion into cartilage during endochondral bone formation. Int J Dev Biol 43:39–49

    PubMed  CAS  Google Scholar 

  • Shukunami C, Yamamoto S, Tanabe T, Hiraki Y (1999b) Generation of multiple transcripts from the chicken chondromodulin-I gene and their expression during embryonic development. FEBS Lett 456:165–170

    Article  PubMed  CAS  Google Scholar 

  • Shukunami C, Oshima Y, Hiraki Y (2001) Molecular cloning of tenomodulin, a novel chondromodulin-I related gene. Biochem Biophys Res Commun 280:1323–1327

    Article  PubMed  CAS  Google Scholar 

  • Shukunami C, Oshima Y, Hiraki Y (2005) Chondromodulin-I and tenomodulin: a new class of tissue-specific angiogenesis inhibitors found in hypovascular connective tissues. Biochem Biophys Res Commun 333:299–307

    Article  PubMed  CAS  Google Scholar 

  • Shukunami C, Takimoto A, Oro M, Hiraki Y (2006) Scleraxis positively regulates the expression of tenomodulin, a differentiation marker of tenocytes. Dev Biol 298:234–247

    Article  PubMed  CAS  Google Scholar 

  • Yamana K, Wada H, Takahashi Y, Sato H, Kasahara Y, Kiyoki M (2001) Molecular cloning and characterization of CHM1L, a novel membrane molecule similar to chondromodulin-I. Biochem Biophys Res Commun 280:1101–1106

    Article  PubMed  CAS  Google Scholar 

  • Yoshioka M, Yuasa S, Matsumura K, Kimura K, Shiomi T, Kimura N, Shukunami C, Okada Y, Mukai M, Shin H, Yozu R, Sata M, Ogawa S, Hiraki Y, Fukuda K (2006) Chondromodulin-I maintains cardiac valvular function by preventing angiogenesis. Nat Med 12:1151–1159

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Mr. T. Matsushita and Ms. K. Kogishi for the histological studies and Ms. Y. Kubo for her valuable secretarial help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chisa Shukunami.

Additional information

This study was partly supported by Grants-in-Aid from the Ministry of Education, Culture, Sport, Science, and Technology of Japan and by the Tanabe Medical Frontier Conference.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shukunami, C., Takimoto, A., Miura, S. et al. Chondromodulin-I and tenomodulin are differentially expressed in the avascular mesenchyme during mouse and chick development. Cell Tissue Res 332, 111–122 (2008). https://doi.org/10.1007/s00441-007-0570-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-007-0570-8

Keywords

Navigation