Skip to main content

Advertisement

Log in

Lmx1a is required for segregation of sensory epithelia and normal ear histogenesis and morphogenesis

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

At embryonic day 8.5, the LIM-homeodomain factor Lmx1a is expressed throughout the otic placode but becomes developmentally restricted to non-sensory epithelia of the ear (endolymphatic duct, ductus reuniens, cochlea lateral wall). We confirm here that the ears of newborn dreher (Lmx1a dr) mutants are dysmorphic. Hair cell markers such as Atoh1 and Myo7 reveal, for the first time, that newborn Lmx1a mutants have only three sensory epithelia: two enlarged canal cristae and one fused epithelium comprising an amalgamation of the cochlea, saccule, and utricle (a “cochlear-gravistatic” endorgan). The enlarged anterior canal crista develops by fusion of horizontal and anterior crista, whereas the posterior crista fuses with an enlarged papilla neglecta that may extend into the cochlear lateral wall. In the fused endorgan, the cochlear region is distinguished from the vestibular region by markers such as Gata3, the presence of a tectorial membrane, and cochlea-specific innervation. The cochlea-like apex displays minor disorganization of the hair and supporting cells. This contrasts with the basal half of the cochlear region, which shows a vestibular epithelium-like organization of hair cells and supporting cells. The dismorphic features of the cochlea are also reflected in altered gene expression patterns. Fgf8 expression expands from inner hair cells in the apex to most hair cells in the base. Two supporting cell marker proteins, Sox2 and Prox1, also differ in their cellular distribution between the base and the apex. Sox2 expression expands in mutant canal cristae prior to their enlargement and fusion and displays a more diffuse and widespread expression in the base of the cochlear region, whereas Prox1 is not detected in the base. These changes in Sox2 and Prox1 expression suggest that Lmx1a expression restricts and sharpens Sox2 expression, thereby defining non-sensory and sensory epithelium. The adult Lmx1a mutant organ of Corti shows a loss of cochlear hair cells, suggesting that the long-term maintenance of hair cells is also disrupted in these mutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abello G, Khatri S, Giraldez F, Alsina B (2007) Early regionalization of the otic placode and its regulation by the Notch signaling pathway. Mech Dev 124:631–645

    Article  CAS  PubMed  Google Scholar 

  • Adam J, Myat A, Le Roux I, Eddison M, Henrique D, Ish-Horowicz D, Lewis J (1998) Cell fate choices and the expression of Notch, Delta and Serrate homologues in the chick inner ear: parallels with Drosophila sense-organ development. Development 125:4645–4654

    CAS  PubMed  Google Scholar 

  • Adams KA, Maida JM, Golden JA, Riddle RD (2000) The transcription factor Lmx1b maintains Wnt1 expression within the isthmic organizer. Development 127:1857–1867

    CAS  PubMed  Google Scholar 

  • Alenina N, Bashammakh S, Bader M (2006) Specification and differentiation of serotonergic neurons. Stem Cell Rev 2:5–10

    Article  CAS  PubMed  Google Scholar 

  • Alexandre P, Bachy I, Marcou M, Wassef M (2006) Positive and negative regulations by FGF8 contribute to midbrain roof plate developmental plasticity. Development 133:2905–2913

    Article  CAS  PubMed  Google Scholar 

  • Asmar J, Biryukova I, Heitzler P (2008) Drosophila dLMO-PA isoform acts as an early activator of achaete/scute proneural expression. Dev Biol 316:487–497

    Article  CAS  PubMed  Google Scholar 

  • Bermingham NA, Hassan BA, Wang VY, Fernandez M, Banfi S, Bellen HJ, Fritzsch B, Zoghbi HY (2001) Proprioceptor pathway development is dependent on Math1. Neuron 30:411–422

    Article  CAS  PubMed  Google Scholar 

  • Bermingham-McDonogh O, Oesterle EC, Stone JS, Hume CR, Huynh HM, Hayashi T (2006) Expression of Prox1 during mouse cochlear development. J Comp Neurol 496:172–186

    Article  CAS  PubMed  Google Scholar 

  • Bhati M, Lee C, Nancarrow AL, Lee M, Craig VJ, Bach I, Guss JM, Mackay JP, Matthews JM (2008a) Implementing the LIM code: the structural basis for cell type-specific assembly of LIM-homeodomain complexes. EMBO J 27:2018–2029

    Article  CAS  PubMed  Google Scholar 

  • Bhati M, Lee M, Nancarrow AL, Bach I, Guss JM, Matthews JM (2008b) Crystallization of an Lhx3-Isl1 complex. Acta Crystallogr Sect F Struct Biol Cryst Commun 64:297–299

    Article  PubMed  CAS  Google Scholar 

  • Biryukova I, Heitzler P (2005) The Drosophila LIM-homeo domain protein Islet antagonizes pro-neural cell specification in the peripheral nervous system. Dev Biol 288:559–570

    Article  CAS  PubMed  Google Scholar 

  • Blomqvist SR, Vidarsson H, Soder O, Enerback S (2006) Epididymal expression of the forkhead transcription factor Foxi1 is required for male fertility. EMBO J 25:4131–4141

    Article  CAS  PubMed  Google Scholar 

  • Bruce LL, Kingsley J, Nichols DH, Fritzsch B (1997) The development of vestibulocochlear efferents and cochlear afferents in mice. Int J Dev Neurosci 15:671–692

    Article  CAS  PubMed  Google Scholar 

  • Caldwell JC, Eberl DF (2002) Towards a molecular understanding of Drosophila hearing. J Neurobiol 53:172–189

    Article  CAS  PubMed  Google Scholar 

  • Chang W, Brigande JV, Fekete DM, Wu DK (2004a) The development of semicircular canals in the inner ear: role of FGFs in sensory cristae. Development 131:4201–4211

    Article  CAS  PubMed  Google Scholar 

  • Chang W, Cole LK, Cantos R, Wu DK (2004b) Molecular genetics of vestibular organ development. In: Highstein SM, Fay RR, Popper AN (eds) The vestibular system, vol 19. Springer, New York, pp 11–56

    Chapter  Google Scholar 

  • Chang W, Lin Z, Kulessa H, Hebert J, Hogan BL, Wu DK (2008) Bmp4 is essential for the formation of the vestibular apparatus that detects angular head movements. PLoS Genet 4:e1000050

    Article  PubMed  CAS  Google Scholar 

  • Chen P, Johnson JE, Zoghbi HY, Segil N (2002) The role of Math1 in inner ear development: uncoupling the establishment of the sensory primordium from hair cell fate determination. Development 129:2495–2505

    Article  CAS  PubMed  Google Scholar 

  • Chizhikov VV, Millen KJ (2004) Control of roof plate development and signaling by Lmx1b in the caudal vertebrate CNS. J Neurosci 24:5694–5703

    Article  CAS  PubMed  Google Scholar 

  • Chizhikov V, Steshina E, Roberts R, Ilkin Y, Washburn L, Millen KJ (2006) Molecular definition of an allelic series of mutations disrupting the mouse Lmx1a (dreher) gene. Mamm Genome 17:1025–1032

    Article  CAS  PubMed  Google Scholar 

  • Daudet N, Lewis J (2005) Two contrasting roles for Notch activity in chick inner ear development: specification of prosensory patches and lateral inhibition of hair-cell differentiation. Development 132:541–551

    Article  CAS  PubMed  Google Scholar 

  • Daudet N, Ripoll C, Moles JP, Rebillard G (2002) Expression of members of Wnt and Frizzled gene families in the postnatal rat cochlea. Brain Res Mol Brain Res 105:98–107

    Article  CAS  PubMed  Google Scholar 

  • Deng M, Pan L, Xie X, Gan L (2006) Differential expression of LIM domain-only (LMO) genes in the developing mouse inner ear. Gene Expr Patterns 6:857–863

    Article  CAS  PubMed  Google Scholar 

  • Deol MS (1964) The origin of the abnormalities of the inner ear in dreher mice.. J Embryol Exp Morph 12:727–733

    CAS  PubMed  Google Scholar 

  • Deol MS (1983) Development of auditory and vestibular systems in mutant mice. In: Romand R (eds) Development of vestibular and auditory systems. Academic Press, New York, pp 309–333

    Google Scholar 

  • Elsen GE, Choi LY, Millen KJ, Grinblat Y, Prince VE (2008) Zic1 and Zic4 regulate zebrafish roof plate specification and hindbrain ventricle morphogenesis. Dev Biol 314:376–392

    Article  CAS  PubMed  Google Scholar 

  • Failli V, Bachy I, Retaux S (2002) Expression of the LIM-homeodomain gene Lmx1a (dreher) during development of the mouse nervous system. Mech Dev 118:225–228

    Article  CAS  PubMed  Google Scholar 

  • Farinas I, Jones KR, Tessarollo L, Vigers AJ, Huang E, Kirstein M, de Caprona DC, Coppola V, Backus C, Reichardt LF, Fritzsch B (2001) Spatial shaping of cochlear innervation by temporally regulated neurotrophin expression. J Neurosci 21:6170–6180

    CAS  PubMed  Google Scholar 

  • Fekete DM, Wu DK (2002) Revisiting cell fate specification in the inner ear. Curr Opin Neurobiol 12:35–42

    Article  CAS  PubMed  Google Scholar 

  • Fritzsch B (2003) The ear of Latimeria chalumnae revisited. Zoology (Jena) 106:243–248

    Google Scholar 

  • Fritzsch B, Nichols DH (1993) DiI reveals a prenatal arrival of efferents at the differentiating otocyst of mice. Hear Res 65:51–60

    Article  CAS  PubMed  Google Scholar 

  • Fritzsch B, Wake MH (1988) The inner ear of gymnophione amphibians and its nerve supply: a comparative study of regressive events in a complex sensory system. Zoomorphology 108:210–217

    Article  Google Scholar 

  • Fritzsch B, Beisel KW, Bermingham NA (2000) Developmental evolutionary biology of the vertebrate ear: conserving mechanoelectric transduction and developmental pathways in diverging morphologies. Neuroreport 11:R35–R44

    Article  CAS  PubMed  Google Scholar 

  • Fritzsch B, Signore M, Simeone A (2001) Otx1 null mutant mice show partial segregation of sensory epithelia comparable to lamprey ears. Dev Genes Evol 211:388–396

    Article  CAS  PubMed  Google Scholar 

  • Fritzsch B, Beisel KW, Jones K, Farinas I, Maklad A, Lee J, Reichardt LF (2002) Development and evolution of inner ear sensory epithelia and their innervation. J Neurobiol 53:143–156

    Article  CAS  PubMed  Google Scholar 

  • Fritzsch B, Matei VA, Nichols DH, Bermingham N, Jones K, Beisel KW, Wang VY (2005a) Atoh1 null mice show directed afferent fiber growth to undifferentiated ear sensory epithelia followed by incomplete fiber retention. Dev Dyn 233:570–583

    Article  CAS  PubMed  Google Scholar 

  • Fritzsch B, Muirhead KA, Feng F, Gray BD, Ohlsson-Wilhelm BM (2005b) Diffusion and imaging properties of three new lipophilic tracers, NeuroVuetrade mark Maroon, NeuroVuetrade mark Red and NeuroVuetrade mark Green and their use for double and triple labeling of neuronal profile. Brain Res Bull 66:249–258

    Article  CAS  PubMed  Google Scholar 

  • Fritzsch B, Beisel KW, Hansen LA (2006a) The molecular basis of neurosensory cell formation in ear development: a blueprint for hair cell and sensory neuron regeneration? Bioessays 28:1181–1193

    Article  CAS  PubMed  Google Scholar 

  • Fritzsch B, Pauley S, Beisel KW (2006b) Cells, molecules and morphogenesis: the making of the vertebrate ear. Brain Res 1091:151–171

    Article  CAS  PubMed  Google Scholar 

  • Fritzsch B, Beisel KW, Pauley S, Soukup G (2007) Molecular evolution of the vertebrate mechanosensory cell and ear. Int J Dev Biol 51:663–678

    Article  CAS  PubMed  Google Scholar 

  • Fritzsch B, Srinivasan RS, Harvey NL, Nichols DH, Oliver G (2008) Canal cristae growth and fiber extension to the outer hair cells require Prox1 activity. Dev Dyn (in press)

  • Giraldez F (1998) Regionalized organizing activity of the neural tube revealed by the regulation of lmx1 in the otic vesicle. Dev Biol 203:189–200

    Article  CAS  PubMed  Google Scholar 

  • Guo C, Qiu HY, Huang Y, Chen H, Yang RQ, Chen SD, Johnson RL, Chen ZF, Ding YQ (2007) Lmx1b is essential for Fgf8 and Wnt1 expression in the isthmic organizer during tectum and cerebellum development in mice. Development 134:317–325

    Article  CAS  PubMed  Google Scholar 

  • Hatch EP, Noyes CA, Wang X, Wright TJ, Mansour SL (2007) Fgf3 is required for dorsal patterning and morphogenesis of the inner ear epithelium. Development 134:3615–3625

    Article  CAS  PubMed  Google Scholar 

  • Hertzano R, Dror AA, Montcouquiol M, Ahmed ZM, Ellsworth B, Camper S, Friedman TB, Kelley MW, Avraham KB (2007) Lhx3, a LIM domain transcription factor, is regulated by Pou4f3 in the auditory but not in the vestibular system. Eur J Neurosci 25:999–1005

    Article  PubMed  Google Scholar 

  • Holmberg J, Hansson E, Malewicz M, Sandberg M, Perlmann T, Lendahl U, Muhr J (2008) SoxB1 transcription factors and Notch signaling use distinct mechanisms to regulate proneural gene function and neural progenitor differentiation. Development 135:1843–1851

    Article  CAS  PubMed  Google Scholar 

  • Hulander M, Kiernan AE, Blomqvist SR, Carlsson P, Samuelsson EJ, Johansson BR, Steel KP, Enerback S (2003) Lack of pendrin expression leads to deafness and expansion of the endolymphatic compartment in inner ears of Foxi1 null mutant mice. Development 130:2013–2025

    Article  CAS  PubMed  Google Scholar 

  • Hunter CS, Rhodes SJ (2005) LIM-homeodomain genes in mammalian development and human disease. Mol Biol Rep 32:67–77

    Article  CAS  PubMed  Google Scholar 

  • Karis A, Pata I, Doorninck JH van, Grosveld F, Zeeuw CI de, Caprona D de, Fritzsch B (2001) Transcription factor GATA-3 alters pathway selection of olivocochlear neurons and affects morphogenesis of the ear. J Comp Neurol 429:615–630

    Article  CAS  PubMed  Google Scholar 

  • Kelley MW (2006) Regulation of cell fate in the sensory epithelia of the inner ear. Nat Rev Neurosci 7:837–849

    Article  CAS  PubMed  Google Scholar 

  • Kiernan AE, Nunes F, Wu DK, Fekete DM (1997) The expression domain of two related homeobox genes defines a compartment in the chicken inner ear that may be involved in semicircular canal formation. Dev Biol 191:215–229

    Article  CAS  PubMed  Google Scholar 

  • Kiernan AE, Pelling AL, Leung KK, Tang AS, Bell DM, Tease C, Lovell-Badge R, Steel KP, Cheah KS (2005) Sox2 is required for sensory organ development in the mammalian inner ear. Nature 434:1031–1035

    Article  CAS  PubMed  Google Scholar 

  • Kimura-Yoshida C, Nakano H, Okamura D, Nakao K, Yonemura S, Belo JA, Aizawa S, Matsui Y, Matsuo I (2005) Canonical Wnt signaling and its antagonist regulate anterior-posterior axis polarization by guiding cell migration in mouse visceral endoderm. Dev Cell 9:639–650

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Lee B, Joshi K, Pfaff SL, Lee JW, Lee SK (2008) A regulatory network to segregate the identity of neuronal subtypes. Dev Cell 14:877–889

    Article  CAS  PubMed  Google Scholar 

  • Lewis ER, Leverenz EL, Bialek WS (1985) The vertebrate inner ear. CRC Press, Boca Raton

    Google Scholar 

  • Lewis SL, Khoo PL, De Young RA, Steiner K, Wilcock C, Mukhopadhyay M, Westphal H, Jamieson RV, Robb L, Tam PP (2008) Dkk1 and Wnt3 interact to control head morphogenesis in the mouse. Development 135:1791–1801

    Article  CAS  PubMed  Google Scholar 

  • Lillevali K, Haugas M, Matilainen T, Pussinen C, Karis A, Salminen M (2006) Gata3 is required for early morphogenesis and Fgf10 expression during otic development. Mech Dev 123:415–429

    Article  PubMed  CAS  Google Scholar 

  • Ma Q, Chen Z, Barco Barrantes I del, Pompa JL de la, Anderson DJ (1998) Neurogenin1 is essential for the determination of neuronal precursors for proximal cranial sensory ganglia. Neuron 20:469–482

    Article  CAS  PubMed  Google Scholar 

  • Ma Q, Anderson DJ, Fritzsch B (2000) Neurogenin 1 null mutant ears develop fewer, morphologically normal hair cells in smaller sensory epithelia devoid of innervation. J Assoc Res Otolaryngol 1:129–143

    Article  CAS  PubMed  Google Scholar 

  • Manzanares M, Trainor PA, Ariza-McNaughton L, Nonchev S, Krumlauf R (2000) Dorsal patterning defects in the hindbrain, roof plate and skeleton in the dreher (dr(J)) mouse mutant. Mech Dev 94:147–156

    Article  CAS  PubMed  Google Scholar 

  • Matei V, Pauley S, Kaing S, Rowitch D, Beisel KW, Morris K, Feng F, Jones K, Lee J, Fritzsch B (2005) Smaller inner ear sensory epithelia in Neurog1 null mice are related to earlier hair cell cycle exit. Dev Dyn 234:633–650

    Article  CAS  PubMed  Google Scholar 

  • Matei VA, Feng F, Pauley S, Beisel KW, Nichols MG, Fritzsch B (2006) Near-infrared laser illumination transforms the fluorescence absorbing X-Gal reaction product BCI into a transparent, yet brightly fluorescent substance. Brain Res Bull 70:33–43

    Article  CAS  PubMed  Google Scholar 

  • Matsunaga E, Katahira T, Nakamura H (2002) Role of Lmx1b and Wnt1 in mesencephalon and metencephalon development. Development 129:5269–5277

    CAS  PubMed  Google Scholar 

  • Matthews JM, Visvader JE (2003) LIM-domain-binding protein 1: a multifunctional cofactor that interacts with diverse proteins. EMBO Rep 4:1132–1137

    Article  CAS  PubMed  Google Scholar 

  • Millonig JH, Millen KJ, Hatten ME (2000) The mouse Dreher gene Lmx1a controls formation of the roof plate in the vertebrate CNS. Nature 403:764–769

    Article  CAS  PubMed  Google Scholar 

  • Morsli H, Choo D, Ryan A, Johnson R, Wu DK (1998) Development of the mouse inner ear and origin of its sensory organs. J Neurosci 18:3327–3335

    CAS  PubMed  Google Scholar 

  • Morsli H, Tuorto F, Choo D, Postiglione MP, Simeone A, Wu DK (1999) Otx1 and Otx2 activities are required for the normal development of the mouse inner ear. Development 126:2335–2343

    CAS  PubMed  Google Scholar 

  • O’Hara FP, Beck E, Barr LK, Wong LL, Kessler DS, Riddle RD (2005) Zebrafish Lmx1b.1 and Lmx1b.2 are required for maintenance of the isthmic organizer. Development 132:3163–3173

    Article  CAS  PubMed  Google Scholar 

  • Ohyama T, Mohamed OA, Taketo MM, Dufort D, Groves AK (2006) Wnt signals mediate a fate decision between otic placode and epidermis. Development 133:865–875

    Article  CAS  PubMed  Google Scholar 

  • Ohyama T, Groves AK, Martin K (2007) The first steps towards hearing: mechanisms of otic placode induction. Int J Dev Biol 51:463–472

    Article  CAS  PubMed  Google Scholar 

  • Pauley S, Wright TJ, Pirvola U, Ornitz D, Beisel K, Fritzsch B (2003) Expression and function of FGF10 in mammalian inner ear development. Dev Dyn 227:203–215

    Article  CAS  PubMed  Google Scholar 

  • Pauley S, Lai E, Fritzsch B (2006) Foxg1 is required for morphogenesis and histogenesis of the mammalian inner ear. Dev Dyn 235:2470–2482

    Article  CAS  PubMed  Google Scholar 

  • Pierce ML, Weston MD, Fritzsch B, Gabel HW, Ruvkun G, Soukup GA (2008) MicroRNA-183 family conservation and ciliated neurosensory organ expression. Evol Dev 10:106–113

    CAS  PubMed  Google Scholar 

  • Pirvola U, Ylikoski J, Trokovic R, Hebert J, McConnell S, Partanen J (2002) FGFR1 is required for the development of the auditory sensory epithelium. Neuron 35:671–685

    Article  CAS  PubMed  Google Scholar 

  • Pirvola U, Zhang X, Mantela J, Ornitz DM, Ylikoski J (2004) Fgf9 signaling regulates inner ear morphogenesis through epithelial-mesenchymal interactions. Dev Biol 273:350–360

    Article  CAS  PubMed  Google Scholar 

  • Puligilla C, Feng F, Ishikawa K, Bertuzzi S, Dabdoub A, Griffith AJ, Fritzsch B, Kelley MW (2007) Disruption of fibroblast growth factor receptor 3 signaling results in defects in cellular differentiation, neuronal patterning, and hearing impairment. Dev Dyn 236:1905–1917

    Article  CAS  PubMed  Google Scholar 

  • Radde-Gallwitz K, Pan L, Gan L, Lin X, Segil N, Chen P (2004) Expression of Islet1 marks the sensory and neuronal lineages in the mammalian inner ear. J Comp Neurol 477:412–421

    Article  CAS  PubMed  Google Scholar 

  • Raft S, Nowotschin S, Liao J, Morrow BE (2004) Suppression of neural fate and control of inner ear morphogenesis by Tbx1. Development 131:1801–1812

    Article  CAS  PubMed  Google Scholar 

  • Riccomagno MM, Takada S, Epstein DJ (2005) Wnt-dependent regulation of inner ear morphogenesis is balanced by the opposing and supporting roles of Shh. Genes Dev 19:1612–1623

    Article  CAS  PubMed  Google Scholar 

  • Sick S, Reinker S, Timmer J, Schlake T (2006) WNT and DKK determine hair follicle spacing through a reaction-diffusion mechanism. Science 314:1447–1450

    Article  CAS  PubMed  Google Scholar 

  • Sienknecht UJ, Fekete DM (2008) Comprehensive Wnt-related gene expression during cochlear duct development in chicken. J Comp Neurol 510:378–395

    Article  CAS  PubMed  Google Scholar 

  • Tessarollo L, Coppola V, Fritzsch B (2004) NT-3 replacement with brain-derived neurotrophic factor redirects vestibular nerve fibers to the cochlea. J Neurosci 24:2575–2584

    Article  CAS  PubMed  Google Scholar 

  • Todi SV, Sharma Y, Eberl DF (2004) Anatomical and molecular design of the Drosophila antenna as a flagellar auditory organ. Microsc Res Tech 63:388–399

    Article  PubMed  Google Scholar 

  • Van Esch H, Devriendt K (2001) Transcription factor GATA3 and the human HDR syndrome. Cell Mol Life Sci 58:1296–1300

    Article  PubMed  Google Scholar 

  • Walker RG, Willingham AT, Zuker CS (2000) A Drosophila mechanosensory transduction channel. Science 287:2229–2234

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Hamblet NS, Mark S, Dickinson ME, Brinkman BC, Segil N, Fraser SE, Chen P, Wallingford JB, Wynshaw-Boris A (2006) Dishevelled genes mediate a conserved mammalian PCP pathway to regulate convergent extension during neurulation. Development 133:1767–1778

    Article  CAS  PubMed  Google Scholar 

  • Wright TJ, Mansour SL (2003) Fgf3 and Fgf10 are required for mouse otic placode induction. Development 130:3379–3390

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We are grateful to Jennifer Kersigo, Anne Lindgren, Yuriko Mishima, and Amanda Branch for technical assistance and collection of mouse embryos, to Dr. Garret Soukup, Marsha Pierce, and Jason Pecka for help in designing and preparing primers, to Drs. Engel, Ornitz, Hogan and Chea for providing plasmids with probes, and to Dr. Huda Zoghbi for mice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Fritzsch.

Additional information

This work was supported by grants from the NCRR/COBRE (P20 RR 018788; D.H.N.) and NIH (RO1 DC 005590; B.F.). Parts of this investigation were conducted in a facility constructed with support of a Research Facilities Improvement Program Grant from the National Center for Research Resources, National Institutes of Health. We acknowledge the use of the confocal microscope facility of the NCCB, supported by EPSCoR EPS-0346476 (CFD 47.076), and of the University of Nebraska microarray facility, supported by NCRR/COBRE.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nichols, D.H., Pauley, S., Jahan, I. et al. Lmx1a is required for segregation of sensory epithelia and normal ear histogenesis and morphogenesis. Cell Tissue Res 334, 339–358 (2008). https://doi.org/10.1007/s00441-008-0709-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-008-0709-2

Keywords

Navigation