Skip to main content

Advertisement

Log in

Establishment of fibrillin-deficient osteoprogenitor cell lines identifies molecular abnormalities associated with extracellular matrix perturbation of osteogenic differentiation

  • Short Communication
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Fibrillin-1 and fibrillin-2 are structural components of the extracellular matrix which are also involved in modulating local TGFβ and BMP bioavailability. Loss of fibrillin-1 or fibrillin-2 is associated with perturbed osteoblast maturation principally as the result of unbalanced TGFβ and BMP signaling. Here, we demonstrated that stable expression of small hairpin RNAs against fibrillin-1(Fbn1) or fibrillin-2 (Fbn2) transcripts in the clonal osteoprogenitor cell line Kusa-A1 led to the same phenotypic and molecular manifestations as germline Fbn1- or Fbn2-null mutations in primary calvarial osteoblast cultures. Proof-of-concept experiments are also presented showing that Fbn1- or Fbn2-silenced Kusa-A1 cell lines are suitable models to identify candidate determinants of osteogenesis which are under the control of extracellular microfibrils. Specific findings included: the inference of a potential role for fibrillin-1-mediated cell–matrix interactions in regulating Kusa-A1 proliferation; the possibility of fibrillin-2 involvement in modulating the activity of transcription factor Runx2 by restricting microRNA expression and/or processing; and the suggestion that fibrillin-1 and fibrillin-2 influence Notch signaling indirectly by differentially regulating BMP signaling. Collectively, the data reiterated the notion that fibrillin-1 and fibrillin-2 exert opposite effects on osteoblast differentiation through the discrete modulation of a broad network of interacting signaling molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Alliston T, Piek E, Derynck R (2008) TGF-β family signaling in skeletal development, maintenance and disease. In: Derynck R, Miyazono K (eds) The TGF-β family. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 667–723

    Google Scholar 

  • Carta L, Smaldone S, Zilberberg L, Loch D, Dietz HC, Rifkin DB, Ramirez F (2009) p38 MAPK is an early determinant of promiscuous Smad2/3 signaling in the aortas of fibrillin-1 (Fbn1)-null mice. J Biol Chem 284:5630–5636

    Article  PubMed  CAS  Google Scholar 

  • Deregowski V, Gazzerro E, Priest L, Rydziel S, Canalis E (2006) Notch1 overexpression inhibits osteoblastogenesis by suppressing Wnt/β-catenin but not bone morphogenetic protein signaling. J Biol Chem 281:6203–6210

    Article  PubMed  CAS  Google Scholar 

  • Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G (1997) Osf2/Cbfal: a transcriptional activator of osteoblast differentiation. Cell 89:747–754

    Article  PubMed  CAS  Google Scholar 

  • Gaur T, Hussain S, Mudhassani R, Parulkar I, Colby JL, Frederick D, Kream BE, van Wijnen AJ, Stein JL, Stein GS, Jones SN, Lian JB (2010) Dicer inactivation in osteoprogenitor cells compromises fetal survival and bone formation, while excision in differentiated osteoblasts increases bone mass in the adult mouse. Dev Biol 340:10–21

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Zhao L, Xing L, Chen D (2010) MicroRNA-204 regulates Runx2 protein expression and mesenchymal progenitor cell differentiation. Stem Cells 28:357–364

    PubMed  Google Scholar 

  • Kawashima N, Shindo K, Sakamoto K, Kondo H, Umezawa A, Kasugai S, Perbal B, Suda H, Takagi M, Katsube K (2005) Molecular and cell biological properties of mouse osteogenic mesenchymal progenitor cells. Kusa J Bone Miner Metab 23:123–133

    Article  CAS  Google Scholar 

  • Li Z, Hassan MQ, Volinia S, van Wijnen AJ, Stein JL, Croce CM, Lian JB, Stein GS (2008) A microRNA signature for a BMP2-induced osteoblast lineage commitment program. Proc Natl Acad Sci USA 105:13906–13911

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Hassan MQ, Jafferji M, Aqeilan RI, Garzon R, Croce CM, van Wijnen AJ, Stein JL, Stein GS, Lian JB (2009) Biological functions of miR-29b contribute to positive regulation of osteoblast differentiation. J Biol Chem 284:15676–15684

    Article  PubMed  CAS  Google Scholar 

  • Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, de Crombrugghe B (2002) The novel zinc finger-containing transcription factor Osterix is required for osteoblast differentiation and bone formation. Cell 108:17–29

    Article  PubMed  CAS  Google Scholar 

  • Nistala H, Lee-Arteaga S, Smaldone S, Siciliano G, Ono R, Sengle G, Arteaga-Solis E, Levasseur R, Ducy P, Sakai LY, Karsenty G, Ramirez F (2010) Fibrillin-1 and−2 differentially modulate endogenous TGFβ and BMP bioavailability during bone formation. J Cell Biol 190:1107–1121

    Article  PubMed  CAS  Google Scholar 

  • Nofziger D, Miyamoto A, Lyons KM, Weinmaster G (1999) Notch signaling imposes two distinct blocks in the differentiation of C2C12 myoblasts. Development 126:1689–1702

    PubMed  CAS  Google Scholar 

  • Ramirez F (2009) Extracellular matrix in the skeleton. In: The skeletal system. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 341–353

  • Ramirez F, Rifkin DB (2009) Extracellular microfibrils: contextual platforms for TGFβ and BMP signaling. Curr Opin Cell Biol 21:616–622

    Article  PubMed  CAS  Google Scholar 

  • Sciaudone M, Gazzerro E, Priest L, Delaney AM, Canalis E (2003) Notch1 impairs osteoblastic differentiation. Endocrinology 144:5631–5639

    Article  PubMed  CAS  Google Scholar 

  • Shindo K, Kawashima N, Sakamoto K, Yamaguchi A, Umezawa A, Tagaci M, Katsube K, Suda H (2003) Osteogenic differentiation of the mesenchymal progenitor cells Kusa is suppressed by Notch signaling. Exp Cell Res 290:370–380

    Article  PubMed  CAS  Google Scholar 

  • Smaldone S, Olivieri J, Gusella GL, Moroncini G, Gabrielli A, Ramirez F (2011) Ha-Ras stabilization mediates pro-fibrotic signals in dermal fibroblasts. Fibrogenesis Tissue Repair 4:8

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Drs. de Crombrugghe and Chen for reagents and Ms. Karen Johnson for organizing the manuscript. This work was supported by NIH grant AR42044.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Ramirez.

Additional information

Silvia Smaldone and Luca Carta, authors have contributed equally to the study

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smaldone, S., Carta, L. & Ramirez, F. Establishment of fibrillin-deficient osteoprogenitor cell lines identifies molecular abnormalities associated with extracellular matrix perturbation of osteogenic differentiation. Cell Tissue Res 344, 511–517 (2011). https://doi.org/10.1007/s00441-011-1167-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-011-1167-9

Keywords

Navigation