Skip to main content

Advertisement

Log in

The role of EMT in renal fibrosis

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

It is clear that the well-described phenomenon of epithelial–mesenchymal transition (EMT) plays a pivotal role in embryonic development, wound healing, tissue regeneration, organ fibrosis and cancer progression. EMTs have been classified into three subtypes based on the functional consequences and biomarker context in which they are encountered. This review will highlight findings on type II EMT as a direct contributor to the kidney myofibroblast population in the development of renal fibrosis, specifically in diabetic nephropathy, the signalling molecules and the pathways involved in type II EMT and changes in the expression of specific miRNA with the EMT process. These findings have provided new insights into the activation and development of EMT during disease processes and may lead to possible therapeutic interventions to suppress EMTs and potentially reverse organ fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abreu JG, Ketpura NI, Reversade B, De Robertis EM (2002) Connective-tissue growth factor (CTGF) modulates cell signalling by BMP and TGF-beta. Nat Cell Biol 4:599–604

    PubMed  CAS  Google Scholar 

  • Acloque H, Adams MS, Fishwick K, Bronner-Fraser M, Nieto MA (2009) Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. J Clin Invest 119:1438–1449

    Article  PubMed  CAS  Google Scholar 

  • Aresu L, Benali S, Garbisa S, Gallo E, Castagnaro M (2011) Matrix metalloproteinases and their role in the renal epithelial mesenchymal transition. Histol Histopath 26:307–313

    CAS  Google Scholar 

  • Badid C, Desmouliere A, Babici D, Hadj-Aissa A, McGregor B, Lefrancois N, Touraine JL, Laville M (2002) Interstitial expression of alpha-SMA: an early marker of chronic renal allograft dysfunction. Nephrol Dial Transplant 17:1993–1998

    Article  PubMed  CAS  Google Scholar 

  • Bakin AV, Tomlinson AK, Bhowmick NA, Moses HL, Arteaga CL (2000) Phosphatidylinositol 3-kinase function is required for transforming growth factor beta-mediated epithelial to mesenchymal transition and cell migration. J Biol Chem 275:36803–36810

    Article  PubMed  CAS  Google Scholar 

  • Barrallo-Gimeno A, Nieto MA (2005) The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development 132:3151–3161

    Article  PubMed  CAS  Google Scholar 

  • Bhowmick NA, Ghiassi M, Bakin A, Aakre M, Lundquist CA, Engel ME, Arteaga CL, Moses HL (2001) Transforming growth factor-beta1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol Biol Cell 12:27–36

    PubMed  CAS  Google Scholar 

  • Bienz M (2005) beta-Catenin: a pivot between cell adhesion and Wnt signalling. Curr Biol 15:R64–67

    Article  PubMed  CAS  Google Scholar 

  • Border WA, Yamamoto T, Noble NA (1996) Transforming growth factor beta in diabetic nephropathy. Diabetes Metab Rev 12:309–339

    PubMed  CAS  Google Scholar 

  • Boutet A, De Frutos CA, Maxwell PH, Mayol MJ, Romero J, Nieto MA (2006) Snail activation disrupts tissue homeostasis and induces fibrosis in the adult kidney. EMBO J 25:5603–5613

    Article  PubMed  CAS  Google Scholar 

  • Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820

    Article  PubMed  CAS  Google Scholar 

  • Burney BO, Kalaitzidis RG, Bakris GL (2009) Novel therapies of diabetic nephropathy. Curr Opin Nephrol Hypertens 18:107–111

    Article  PubMed  CAS  Google Scholar 

  • Burns WC, Twigg SM, Forbes JM, Pete J, Tikellis C, Thallas-Bonke V, Thomas MC, Cooper ME, Kantharidis P (2006) Connective tissue growth factor plays an important role in advanced glycation end product-induced tubular epithelial-to-mesenchymal transition: implications for diabetic renal disease. J Am Soc Nephrol 17:2484–2494

    Article  PubMed  CAS  Google Scholar 

  • Cano A, Perez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, Portillo F, Nieto MA (2000) The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nature Cell Biol 2:76–83

    Article  PubMed  CAS  Google Scholar 

  • Chang HY, Chi JT, Dudoit S, Bondre C, van de Rijn M, Botstein D, Brown PO (2002) Diversity, topographic differentiation, and positional memory in human fibroblasts. Proc Natl Acad Sci USA 99:12877–12882

    Article  PubMed  CAS  Google Scholar 

  • Cheng S, Lovett DH (2003) Gelatinase A (MMP-2) is necessary and sufficient for renal tubular cell epithelial-mesenchymal transformation. Am J Pathol 162:1937–1949

    Article  PubMed  CAS  Google Scholar 

  • Cho HJ, Baek KE, Saika S, Jeong MJ, Yoo J (2007) Snail is required for transforming growth factor-beta-induced epithelial-mesenchymal transition by activating PI3 kinase/Akt signal pathway. Biochem Biophys Res Commun 353:337–343

    Article  PubMed  CAS  Google Scholar 

  • Chung AC, Huang XR, Meng X, Lan HY (2010) miR-192 mediates TGF-beta/Smad3-driven renal fibrosis. J Am Soc Nephrol 21:1317–1325

    Google Scholar 

  • Colwell AS, Longaker MT, Lorenz HP (2005) Mammalian fetal organ regeneration. Adv Biochem Eng Biotechnol 93:83–100

    PubMed  CAS  Google Scholar 

  • Cooper ME, Gilbert RE (2003) Pathogenesis, prevention, and treatment of diabetic nephropathy. In: Johnson RJ, Feehally J (eds) Comprehensive clinical nephrology. Mosby, Philadelphia, pp 439–451

  • De Albuquerque DA, Saxena V, Adams DE, Boivin GP, Brunner HI, Witte DP, Singh RR (2004) An ACE inhibitor reduces Th2 cytokines and TGF-beta1 and TGF-beta2 isoforms in murine lupus nephritis. Kidney Int 65:846–859

    Article  PubMed  Google Scholar 

  • De Laplanche E, Gouget K, Cleris G, Dragounoff F, Demont J, Morales A, Bezin L, Godinot C, Perriere G, Mouchiroud D et al (2006) Physiological oxygenation status is required for fully differentiated phenotype in kidney cortex proximal tubules. Am J Physiol Renal Physiol 291:F750–760

    Article  PubMed  CAS  Google Scholar 

  • Dolan V, Murphy M, Sadlier D, Lappin D, Doran P, Godson C, Martin F, O'Meara Y, Schmid H, Henger A et al (2005) Expression of gremlin, a bone morphogenetic protein antagonist, in human diabetic nephropathy. Am J Kidney Dis 45:1034–1039

    Article  PubMed  CAS  Google Scholar 

  • Dressler GR (2006) The cellular basis of kidney development. Annu Rev Cell Dev Biol 22:509–529

    Article  PubMed  CAS  Google Scholar 

  • Fan JM, Ng YY, Hill PA, Nikolic-Paterson DJ, Mu W, Atkins RC, Lan HY (1999) Transforming growth factor-beta regulates tubular epithelial-myofibroblast transdifferentiation in vitro. Kidney Int 56:1455–1467

    Article  PubMed  CAS  Google Scholar 

  • Fan JM, Huang XR, Ng YY, Nikolic-Paterson DJ, Mu W, Atkins RC, Lan HY (2001) Interleukin-1 induces tubular epithelial-myofibroblast transdifferentiation through a transforming growth factor-beta1-dependent mechanism in vitro. Am J Kidney Dis 37:820–831

    Article  PubMed  CAS  Google Scholar 

  • Franke WW, Schmid E, Osborn M, Weber K (1978) Different intermediate-sized filaments distinguished by immunofluorescence microscopy. Proc Natl Acad Sci USA 75:5034–5038

    Article  PubMed  CAS  Google Scholar 

  • Gagliardini E, Benigni A (2006) Role of anti-TGF-beta antibodies in the treatment of renal injury. Cytokine Growth Factor Rev 17:89–96

    Article  PubMed  CAS  Google Scholar 

  • Galichon P, Hertig A (2011) Epithelial to mesenchymal transition as a biomarker in renal fibrosis: are we ready for the bedside? Fibrogenesis Tissue Repair 4:11

    Article  PubMed  CAS  Google Scholar 

  • Gilbert RE, Cooper ME (1999) The tubulointerstitium in progressive diabetic kidney disease: more than an aftermath of glomerular injury? Kidney Int 56:1627–1637

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Alamillo C, Benito-Hernandez A, Ramos-Barron MA, Agueros C, Rodrigo E, Ruiz JC, Sanchez M, San Cosme L, Arias M (2010) Analysis of urinary gene expression of epithelial-mesenchymal transition markers in kidney transplant recipients. Transplant Proc 42:2886–2888

    Article  PubMed  CAS  Google Scholar 

  • Gore-Hyer E, Shegogue D, Markiewicz M, Lo S, Hazen-Martin D, Greene EL, Grotendorst G, Trojanowska M (2002) TGF-beta and CTGF have overlapping and distinct fibrogenic effects on human renal cells. Am J Physiol Renal Physiol 283:F707–716

    PubMed  Google Scholar 

  • Goumenos DS, Brown CB, Shortland J, El Nahas AM (1994) Myofibroblasts, predictors of progression of mesangial IgA nephropathy? Nephrol Dial Transplant 9:1418–1425

    PubMed  CAS  Google Scholar 

  • Greenburg G, Hay ED (1982) Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells. J Cell Biol 95:333–339

    Article  PubMed  CAS  Google Scholar 

  • Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y, Goodall GJ (2008a) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10:593–601

    Article  PubMed  CAS  Google Scholar 

  • Gregory PA, Bracken CP, Bert AG, Goodall GJ (2008b) MicroRNAs as regulators of epithelial-mesenchymal transition. Cell Cycle 7:3112–3118

    Article  PubMed  CAS  Google Scholar 

  • Grgic I, Duffield JS, Humphreys BD (2011) The origin of interstitial myofibroblasts in chronic kidney disease. Pediatr Nephrol (in press)

  • Gupta S, Clarkson MR, Duggan J, Brady HR (2000) Connective tissue growth factor: potential role in glomerulosclerosis and tubulointerstitial fibrosis. Kidney Int 58:1389–1399

    Article  PubMed  CAS  Google Scholar 

  • Halawa B (1998) Combination therapy in primary hypertension. Polski merkuriusz lekarski: organ Polskiego Towarzystwa Lekarskiego 4:35–38

    CAS  Google Scholar 

  • Hay ED (2005) The mesenchymal cell, its role in the embryo, and the remarkable signaling mechanisms that create it. Dev Dyn 233:706–720

    Article  PubMed  CAS  Google Scholar 

  • Hayashida T, Poncelet AC, Hubchak SC, Schnaper HW (1999) TGF-beta1 activates MAP kinase in human mesangial cells: a possible role in collagen expression. Kidney Int 56:1710–1720

    Article  PubMed  CAS  Google Scholar 

  • He W, Kang YS, Dai C, Liu Y (2011) Blockade of Wnt/beta-catenin signaling by paricalcitol ameliorates proteinuria and kidney injury. J Am Soc Nephrol 22:90–103

    Article  PubMed  CAS  Google Scholar 

  • Hill C, Flyvbjerg A, Gronbaek H, Petrik J, Hill DJ, Thomas CR, Sheppard MC, Logan A (2000) The renal expression of transforming growth factor-beta isoforms and their receptors in acute and chronic experimental diabetes in rats. Endocrinology 141:1196–1208

    Article  PubMed  CAS  Google Scholar 

  • Hill C, Flyvbjerg A, Rasch R, Bak M, Logan A (2001) Transforming growth factor-beta2 antibody attenuates fibrosis in the experimental diabetic rat kidney. J Endocrinol 170:647–651

    Article  PubMed  CAS  Google Scholar 

  • Hills CE, Brunskill NJ (2009) Cellular and physiological effects of C-peptide. Clin Sci (Lond) 116:565–574

    Article  CAS  Google Scholar 

  • Holian J, Qi W, Kelly DJ, Zhang Y, Mreich E, Pollock CA, Chen XM (2008) Role of Kruppel-like factor 6 in transforming growth factor-beta1-induced epithelial-mesenchymal transition of proximal tubule cells. Am J Physiol Renal Physiol 295:F1388–1396

    Article  PubMed  CAS  Google Scholar 

  • Humphreys BD, Lin SL, Kobayashi A, Hudson TE, Nowlin BT, Bonventre JV, Valerius MT, McMahon AP, Duffield JS (2010) Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol 176:85–97

    Article  PubMed  CAS  Google Scholar 

  • Hynes RO, Yamada KM (1982) Fibronectins: multifunctional modular glycoproteins. J Cell Biol 95:369–377

    Article  PubMed  CAS  Google Scholar 

  • Ito Y, Aten J, Bende RJ, Oemar BS, Rabelink TJ, Weening JJ, Goldschmeding R (1998) Expression of connective tissue growth factor in human renal fibrosis. Kidney Int 53:853–861

    Article  PubMed  CAS  Google Scholar 

  • Iwano M, Plieth D, Danoff TM, Xue C, Okada H, Neilson EG (2002) Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest 110:341–350

    PubMed  CAS  Google Scholar 

  • Jamora C, Lee P, Kocieniewski P, Azhar M, Hosokawa R, Chai Y, Fuchs E (2005) A signaling pathway involving TGF-beta2 and snail in hair follicle morphogenesis. PLoS Biol 3:e11

    Article  PubMed  CAS  Google Scholar 

  • Janda E, Lehmann K, Killisch I, Jechlinger M, Herzig M, Downward J, Beug H, Grunert S (2002) Ras and TGF{beta} cooperatively regulate epithelial cell plasticity and metastasis: dissection of Ras signaling pathways. J Cell Biol 156:299–314

    Article  PubMed  CAS  Google Scholar 

  • Kalluri R, Neilson EG (2003) Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest 112:1776–1784

    PubMed  CAS  Google Scholar 

  • Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119:1420–1428

    Article  PubMed  CAS  Google Scholar 

  • Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6:392–401

    Article  PubMed  CAS  Google Scholar 

  • Kato M, Wang L, Putta S, Wang M, Yuan H, Sun G, Lanting L, Todorov I, Rossi JJ, Natarajan R. Post-transcriptional up-regulation of Tsc-22 by Ybx1, a target of miR-216a, mediates TGF-{beta}-induced collagen expression in kidney cells. J Biol Chem 285:34004–34015

  • Kato M, Zhang J, Wang M, Lanting L, Yuan H, Rossi JJ, Natarajan R (2007) MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors. Proc Natl Acad Sci USA 104:3432–3437

    Article  PubMed  CAS  Google Scholar 

  • Kato M, Putta S, Wang M, Yuan H, Lanting L, Nair I, Gunn A, Nakagawa Y, Shimano H, Todorov I et al (2009) TGF-beta activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN. Nat Cell Biol 11:881–889

    Article  PubMed  CAS  Google Scholar 

  • Kattla JJ, Carew RM, Heljic M, Godson C, Brazil DP (2008) Protein kinase B/Akt activity is involved in renal TGF{beta}-1 driven epithelial-mesenchymal transition in vitro and in vivo. Am J Physiol Renal Physiol 295:F215–F225

    Google Scholar 

  • Khokha MK, Hsu D, Brunet LJ, Dionne MS, Harland RM (2003) Gremlin is the BMP antagonist required for maintenance of Shh and Fgf signals during limb patterning. Nat Genet 34:303–307

    Article  PubMed  CAS  Google Scholar 

  • Kim K, Lu Z, Hay ED (2002a) Direct evidence for a role of beta-catenin/LEF-1 signaling pathway in induction of EMT. Cell Biol Int 26:463–476

    Article  PubMed  CAS  Google Scholar 

  • Kim K, Lu Z, Hay ED (2002b) Direct evidence for a role of beta-catenin/LEF-1 signaling pathway in induction of EMT. Cell Biol Int 26:463–476

    Article  PubMed  CAS  Google Scholar 

  • Kim KK, Kugler MC, Wolters PJ, Robillard L, Galvez MG, Brumwell AN, Sheppard D, Chapman HA (2006) Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix. Proc Natl Acad Sci USA 103:13180–13185

    Article  PubMed  CAS  Google Scholar 

  • Korpal M, Lee ES, Hu G, Kang Y (2008) The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem 283:14910–14914

    Article  PubMed  CAS  Google Scholar 

  • Koseki C, Herzlinger D, al-Awqati Q (1992) Apoptosis in metanephric development. J Cell Biol 119:1327–1333

    Article  PubMed  CAS  Google Scholar 

  • Krupa A, Jenkins R, Luo DD, Lewis A, Phillips A, Fraser D (2010) Loss of microRNA-192 promotes fibrogenesis in diabetic nephropathy. J Am Soc Nephrol 21:438–447

    Google Scholar 

  • Lassila M, Seah KK, Allen TJ, Thallas V, Thomas MC, Candido R, Burns WC, Forbes JM, Calkin AC, Cooper ME et al (2004) Accelerated nephropathy in diabetic apolipoprotein e-knockout mouse: role of advanced glycation end products. J Am Soc Nephrol 15:2125–2138

    Article  PubMed  CAS  Google Scholar 

  • Lassila M, Jandeleit-Dahm K, Seah KK, Smith CM, Calkin AC, Allen TJ, Cooper ME (2005) Imatinib attenuates diabetic nephropathy in apolipoprotein E-knockout mice. J Am Soc Nephrol 16:363–373

    Article  PubMed  CAS  Google Scholar 

  • Leask A (2010) Targeting the jagged/notch pathway: a new treatment for fibrosis? J Cell Commun Signal 4:197–198

    Article  PubMed  Google Scholar 

  • Ledbetter S, Kurtzberg L, Doyle S, Pratt BM (2000) Renal fibrosis in mice treated with human recombinant transforming growth factor-beta2. Kidney Int 58:2367–2376

    Article  PubMed  CAS  Google Scholar 

  • Lee JM, Dedhar S, Kalluri R, Thompson EW (2006) The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol 172:973–981

    Article  PubMed  CAS  Google Scholar 

  • Leroy P, Mostov KE (2007) Slug is required for cell survival during partial epithelial-mesenchymal transition of HGF-induced tubulogenesis. Mol Biol Cell 18:1943–1952

    Article  PubMed  CAS  Google Scholar 

  • Li X, Talts U, Talts JF, Arman E, Ekblom P, Lonai P (2001) Akt/PKB regulates laminin and collagen IV isotypes of the basement membrane. Proc Natl Acad Sci USA 98:14416–14421

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Yang J, Dai C, Wu C, Liu Y (2003) Role for integrin-linked kinase in mediating tubular epithelial to mesenchymal transition and renal interstitial fibrogenesis. J Clin Investig 112:503–516

    PubMed  CAS  Google Scholar 

  • Li Y, Kang YS, Dai C, Kiss LP, Wen X, Liu Y (2008) Epithelial-to-mesenchymal transition is a potential pathway leading to podocyte dysfunction and proteinuria. Am J Pathol 172:299–308

    Article  PubMed  CAS  Google Scholar 

  • Liu Y (2004) Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. J Am Soc Nephrol 15:1–12

    Google Scholar 

  • Liu Y, Taylor NE, Lu L, Usa K, Cowley AW, Jr, Ferreri NR, Yeo NC, Liang M (2010) Renal medullary microRNAs in Dahl salt-sensitive rats: miR-29b regulates several collagens and related genes. Hypertension 55:974–982

    Google Scholar 

  • Mani SA, Yang J, Brooks M, Schwaninger G, Zhou A, Miura N, Kutok JL, Hartwell K, Richardson AL, Weinberg RA (2007) Mesenchyme Forkhead 1 (FOXC2) plays a key role in metastasis and is associated with aggressive basal-like breast cancers. Proc Natl Acad Sci USA 104:10069–10074

    Article  PubMed  CAS  Google Scholar 

  • Mason RM, Wahab NA (2003) Extracellular matrix metabolism in diabetic nephropathy. J Am Soc Nephrol 14:1358–1373

    Article  PubMed  CAS  Google Scholar 

  • Mauer M, Zinman B, Gardiner R, Suissa S, Sinaiko A, Strand T, Drummond K, Donnelly S, Goodyer P, Gubler MC et al (2009) Renal and retinal effects of enalapril and losartan in type 1 diabetes. N Engl J Med 361:40–51

    Article  PubMed  CAS  Google Scholar 

  • McMahon R, Murphy M, Clarkson M, Taal M, Mackenzie HS, Godson C, Martin F, Brady HR (2000) IHG-2, a mesangial cell gene induced by high glucose, is human gremlin. Regulation by extracellular glucose concentration, cyclic mechanical strain, and transforming growth factor-beta1. J Biol Chem 275:9901–9904

    Article  PubMed  CAS  Google Scholar 

  • Mitu G, Hirschberg R (2008) Bone morphogenetic protein-7 (BMP7) in chronic kidney disease. Front Biosci 13:4726–4739

    Article  PubMed  CAS  Google Scholar 

  • Morrissey J, Hruska K, Guo G, Wang S, Chen Q, Klahr S (2002) Bone morphogenetic protein-7 improves renal fibrosis and accelerates the return of renal function. J Am Soc Nephrol 13(Suppl 1):S14–21

    PubMed  CAS  Google Scholar 

  • Murphy M, Godson C, Cannon S, Kato S, Mackenzie HS, Martin F, Brady HR (1999) Suppression subtractive hybridization identifies high glucose levels as a stimulus for expression of connective tissue growth factor and other genes in human mesangial cells. J Biol Chem 274:5830–5834

    Article  PubMed  CAS  Google Scholar 

  • Nath KA (1992) Tubulointerstitial changes as a major determinant in the progression of renal damage. Am J Kidney Dis 20:1–17

    PubMed  CAS  Google Scholar 

  • Neilson EG (2006) Mechanisms of disease: Fibroblasts–a new look at an old problem. Nat Clin Pract Nephrol 2:101–108

    Article  PubMed  CAS  Google Scholar 

  • Neilson EG (2007) Plasticity, nuclear diapause, and a requiem for the terminal differentiation of epithelia. J Am Soc Nephrol 18:1995–1998

    Article  PubMed  CAS  Google Scholar 

  • Neilson EG (2010) The Jeremiah Metzger lecture. The origin of fibroblasts and the terminality of epithelial differentiation. Trans Am Clin Climatol Assoc 121:240–250, The Jeremiah Metzger lecture

    PubMed  Google Scholar 

  • Ng YY, Huang TP, Yang WC, Chen ZP, Yang AH, Mu W, Nikolic-Paterson DJ, Atkins RC, Lan HY (1998) Tubular epithelial-myofibroblast transdifferentiation in progressive tubulointerstitial fibrosis in 5/6 nephrectomized rats. Kidney Int 54:864–876

    Article  PubMed  CAS  Google Scholar 

  • Nishikawa T, Edelstein D, Brownlee M (2000) The missing link: a single unifying mechanism for diabetic complications. Kidney Int Suppl 77:S26–30

    Article  PubMed  CAS  Google Scholar 

  • Nyhan KC, Faherty N, Murray G, Cooey LB, Godson C, Crean JK, Brazil DP (2010) Jagged/Notch signalling is required for a subset of TGFbeta1 responses in human kidney epithelial cells. Biochim Biophys Acta 1803:1386–1395

    Article  PubMed  CAS  Google Scholar 

  • Okada H, Danoff TM, Kalluri R, Neilson EG (1997) Early role of Fsp1 in epithelial-mesenchymal transformation. Am J Physiol 273:F563–574

    PubMed  CAS  Google Scholar 

  • Okada H, Ban S, Nagao S, Takahashi H, Suzuki H, Neilson EG (2000a) Progressive renal fibrosis in murine polycystic kidney disease: an immunohistochemical observation. Kidney Int 58:587–597

    Article  PubMed  CAS  Google Scholar 

  • Okada H, Inoue T, Suzuki H, Strutz F, Neilson EG (2000b) Epithelial-mesenchymal transformation of renal tubular epithelial cells in vitro and in vivo. Nephrol Dial Transplant 15(Suppl 6):44–46

    Article  PubMed  Google Scholar 

  • Oldfield MD, Bach LA, Forbes JM, Nikolic-Paterson D, McRobert A, Thallas V, Atkins RC, Osicka T, Jerums G, Cooper ME (2001) Advanced glycation end products cause epithelial-myofibroblast transdifferentiation via the receptor for advanced glycation end products (RAGE). J Clin Invest 108:1853–1863

    PubMed  CAS  Google Scholar 

  • Park SM, Gaur AB, Lengyel E, Peter ME (2008) The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 22:894–907

    Article  PubMed  CAS  Google Scholar 

  • Peinado H, Quintanilla M, Cano A (2003) Transforming growth factor beta-1 induces snail transcription factor in epithelial cell lines: mechanisms for epithelial mesenchymal transitions. J Biol Chem 278:21113–21123

    Article  PubMed  CAS  Google Scholar 

  • Peinado H, Olmeda D, Cano A (2007) Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 7:415–428

    Article  PubMed  CAS  Google Scholar 

  • Phanish MK, Wahab NA, Colville-Nash P, Hendry BM, Dockrell ME (2006) The differential role of Smad2 and Smad3 in the regulation of pro-fibrotic TGFbeta1 responses in human proximal-tubule epithelial cells. Biochem J 393:601–607

    Article  PubMed  CAS  Google Scholar 

  • Potenta S, Zeisberg E, Kalluri R (2008) The role of endothelial-to-mesenchymal transition in cancer progression. Br J Cancer 99:1375–1379

    Article  PubMed  CAS  Google Scholar 

  • Powell DW, Mifflin RC, Valentich JD, Crowe SE, Saada JI, West AB (1999) Myofibroblasts. I. Paracrine cells important in health and disease. Am J Physiol 277:C1–9

    PubMed  CAS  Google Scholar 

  • Qi W, Twigg S, Chen X, Polhill TS, Poronnik P, Gilbert RE, Pollock CA (2005) Integrated actions of transforming growth factor-beta1 and connective tissue growth factor in renal fibrosis. Am J Physiol Renal Physiol 288:F800–F809

    Article  PubMed  CAS  Google Scholar 

  • Qi W, Chen X, Holian J, Mreich E, Twigg S, Gilbert RE, Pollock CA (2006a) Transforming growth factor-beta1 differentially mediates fibronectin and inflammatory cytokine expression in kidney tubular cells. Am J Physiol Renal Physiol 291:F1070–F1077

    Article  PubMed  CAS  Google Scholar 

  • Qi W, Chen X, Twigg S, Polhill TS, Gilbert RE, Pollock CA (2006b) Tranilast attenuates connective tissue growth factor-induced extracellular matrix accumulation in renal cells. Kidney Int 69:989–995

    Article  PubMed  CAS  Google Scholar 

  • Qi W, Chen X, Poronnik P, Pollock CA (2008) Transforming growth factor-beta/connective tissue growth factor axis in the kidney. Int J Biochem Cell Biol 40:9–13

    Article  PubMed  CAS  Google Scholar 

  • Qin W, Chi-Kong A, Huang XR, Meng X, Lan HY (2010) miR-29 inhibits TGF-beta/Smad3-mediated renal fibrosis in vitro and in vivo. 43rd Annual Meeting of the American Society of Nephrology (Denver, Colorado)

  • Rastaldi MP, Ferrario F, Giardino L, Dell'Antonio G, Grillo C, Grillo P, Strutz F, Muller GA, Colasanti G, D'Amico G (2002) Epithelial-mesenchymal transition of tubular epithelial cells in human renal biopsies. Kidney Int 62:137–146

    Article  PubMed  Google Scholar 

  • Reese S, Vidyasagar A, Jacobson L, Acun Z, Esnault S, Hullett D, Malter JS, Djamali A (2010) The Pin 1 inhibitor juglone attenuates kidney fibrogenesis via Pin 1-independent mechanisms in the unilateral ureteral occlusion model. Fibrogenesis Tissue Repair 3:1

    Article  PubMed  CAS  Google Scholar 

  • Reeves WB, Andreoli TE (2000) Transforming growth factor beta contributes to progressive diabetic nephropathy. Proc Natl Acad Sci USA 97:7667–7669

    Article  PubMed  CAS  Google Scholar 

  • Rinn JL, Bondre C, Gladstone HB, Brown PO, Chang HY (2006) Anatomic demarcation by positional variation in fibroblast gene expression programs. PLoS Genetics 2:e119

    Article  PubMed  CAS  Google Scholar 

  • Roberts AB (1998) Molecular and cell biology of TGF-beta. Miner Electrolyte Metab 24:111–119

    Article  PubMed  CAS  Google Scholar 

  • Roberts AB, Sporn MB (1993) Physiological actions and clinical applications of transforming growth factor-beta (TGF-beta). Growth Factors 8:1–9

    Article  PubMed  CAS  Google Scholar 

  • Roberts IS, Burrows C, Shanks JH, Venning M, McWilliam LJ (1997) Interstitial myofibroblasts: predictors of progression in membranous nephropathy. J Clin Pathol 50:123–127

    Article  PubMed  CAS  Google Scholar 

  • Rodgers K, McMahon B, Mitchell D, Sadlier D, Godson C (2005) Lipoxin A4 modifies platelet-derived growth factor-induced pro-fibrotic gene expression in human renal mesangial cells. Am J Pathol 167:683–694

    Article  PubMed  CAS  Google Scholar 

  • Runyan CE, Schnaper HW, Poncelet AC (2004) The phosphatidylinositol 3-kinase/Akt pathway enhances Smad3-stimulated mesangial cell collagen I expression in response to transforming growth factor-beta1. J Biol Chem 279:2632–2639

    Article  PubMed  CAS  Google Scholar 

  • Saad S, Stanners SR, Yong R, Tang O, Pollock CA (2010) Notch mediated epithelial to mesenchymal transformation is associated with increased expression of the Snail transcription factor. Int J Biochem Cell Biol 42:1115–1122

    Article  PubMed  CAS  Google Scholar 

  • Sanford LP, Ormsby I, Gittenberger-de Groot AC, Sariola H, Friedman R, Boivin GP, Cardell EL, Doetschman T (1997) TGFbeta2 knockout mice have multiple developmental defects that are non-overlapping with other TGFbeta knockout phenotypes. Development 124:2659–2670

    PubMed  CAS  Google Scholar 

  • Schena FP, Gesualdo L (2005) Pathogenetic mechanisms of diabetic nephropathy. J Am Soc Nephrol 16(Suppl 1):S30–33

    Article  PubMed  CAS  Google Scholar 

  • Scherer A, Gwinner W, Mengel M, Kirsch T, Raulf F, Szustakowski, JD, Hartmann N, Staedtler F, Engel G, Klupp J et al. (2009) Transcriptome changes in renal allograft protocol biopsies at 3 months precede the onset of interstitial fibrosis/tubular atrophy (IF/TA) at 6 months. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association 24:2567–2575

    Google Scholar 

  • Schramek H, Feifel E, Marschitz I, Golochtchapova N, Gstraunthaler G, Montesano R (2003) Loss of active MEK1-ERK1/2 restores epithelial phenotype and morphogenesis in transdifferentiated MDCK cells. Am J Physiol Cell Physiol 285:C652–661

    PubMed  CAS  Google Scholar 

  • Sharma K, Ziyadeh FN (1995) Hyperglycemia and diabetic kidney disease. The case for transforming growth factor-beta as a key mediator. Diabetes 44:1139–1146

    Article  PubMed  CAS  Google Scholar 

  • Sharma K, Jin Y, Guo J, Ziyadeh FN (1996) Neutralization of TGF-beta by anti-TGF-beta antibody attenuates kidney hypertrophy and the enhanced extracellular matrix gene expression in STZ-induced diabetic mice. Diabetes 45:522–530

    Article  PubMed  CAS  Google Scholar 

  • Sharma K, Ziyadeh FN, Alzahabi B, McGowan TA, Kapoor S, Kurnik BR, Kurnik PB, Weisberg LS (1997) Increased renal production of transforming growth factor-beta1 in patients with type II diabetes. Diabetes 46:854–859

    Article  PubMed  CAS  Google Scholar 

  • Shook D, Keller R (2003) Mechanisms, mechanics and function of epithelial-mesenchymal transitions in early development. Mech Dev 120:1351–1383

    Article  PubMed  CAS  Google Scholar 

  • Slattery C, Campbell E, McMorrow T, Ryan MP (2005) Cyclosporine A-induced renal fibrosis: a role for epithelial-mesenchymal transition. Am J Pathol 167:395–407

    Article  PubMed  CAS  Google Scholar 

  • Stopa M, Anhuf D, Terstegen L, Gatsios P, Gressner AM, Dooley S (2000) Participation of Smad2, Smad3, and Smad4 in transforming growth factor beta (TGF-beta)-induced activation of Smad7. The TGF-beta response element of the promoter requires functional Smad binding element and E-box sequences for transcriptional regulation. J Biol Chem 275:29308–29317

    Article  PubMed  CAS  Google Scholar 

  • Strutz F, Okada H, Lo CW, Danoff T, Carone RL, Tomaszewski JE, Neilson EG (1995) Identification and characterization of a fibroblast marker: FSP1. J Cell Biol 130:393–405

    Article  PubMed  CAS  Google Scholar 

  • Strutz F, Zeisberg M, Ziyadeh FN, Yang CQ, Kalluri R, Muller GA, Neilson EG (2002) Role of basic fibroblast growth factor-2 in epithelial-mesenchymal transformation. Kidney Int 61:1714–1728

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto H, Grahovac G, Zeisberg M, Kalluri R (2007) Renal fibrosis and glomerulosclerosis in a new mouse model of diabetic nephropathy and its regression by bone morphogenic protein-7 and advanced glycation end product inhibitors. Diabetes 56:1825–1833

    Article  PubMed  CAS  Google Scholar 

  • Taki M, Kamata N, Yokoyama K, Fujimoto R, Tsutsumi S, Nagayama M (2003) Down-regulation of Wnt-4 and up-regulation of Wnt-5a expression by epithelial-mesenchymal transition in human squamous carcinoma cells. Cancer Sci 94:593–597

    Article  PubMed  CAS  Google Scholar 

  • Usui H, Shikata K, Matsuda M, Okada S, Ogawa D, Yamashita T, Hida K, Satoh M, Wada J, Makino H (2003) HMG-CoA reductase inhibitor ameliorates diabetic nephropathy by its pleiotropic effects in rats. Nephrol Dial Transplant 18:265–272

    Article  PubMed  CAS  Google Scholar 

  • Valcourt U, Kowanetz M, Niimi H, Heldin CH, Moustakas A (2005) TGF-beta and the Smad signaling pathway support transcriptomic reprogramming during epithelial-mesenchymal cell transition. Mol Biol Cell 16:1987–2002

    Article  PubMed  CAS  Google Scholar 

  • Venkov CD, Link AJ, Jennings JL, Plieth D, Inoue T, Nagai K, Xu C, Dimitrova YN, Rauscher FJ, Neilson EG (2007) A proximal activator of transcription in epithelial-mesenchymal transition. J Clin Invest 117:482–491

    Article  PubMed  CAS  Google Scholar 

  • Vogel W, Gish GD, Alves F, Pawson T (1997) The discoidin domain receptor tyrosine kinases are activated by collagen. Mol Cell 1:13–23

    Article  PubMed  CAS  Google Scholar 

  • Vongwiwatana A, Tasanarong A, Rayner DC, Melk A, Halloran PF (2005) Epithelial to mesenchymal transition during late deterioration of human kidney transplants: the role of tubular cells in fibrogenesis. Am J Transplant 5:1367–1374

    Article  PubMed  CAS  Google Scholar 

  • Wahab NA, Yevdokimova N, Weston BS, Roberts T, Li XJ, Brinkman H, Mason RM (2001) Role of connective tissue growth factor in the pathogenesis of diabetic nephropathy. Biochem J 359:77–87

    Article  PubMed  CAS  Google Scholar 

  • Walsh DW, Roxburgh SA, McGettigan P, Berthier CC, Higgins DG, Kretzler M, Cohen CD, Mezzano S, Brazil DP, Martin F (2008) Co-regulation of Gremlin and Notch signalling in diabetic nephropathy. Biochim Biophys Acta 1782:10–21

    PubMed  CAS  Google Scholar 

  • Wang S, Denichilo M, Brubaker C, Hirschberg R (2001) Connective tissue growth factor in tubulointerstitial injury of diabetic nephropathy. Kidney Int 60:96–105

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Zheng M, Liu G, Xia W, McKeown-Longo PJ, Hung MC, Zhao J (2007) Kruppel-like factor 8 induces epithelial to mesenchymal transition and epithelial cell invasion. Cancer Res 67:7184–7193

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Wang Y, Minto AW, Wang J, Shi Q, Li X, Quigg RJ (2008) MicroRNA-377 is up-regulated and can lead to increased fibronectin production in diabetic nephropathy. FASEB J 22:4126–4135

    Article  PubMed  CAS  Google Scholar 

  • Wang B, Herman-Edelstein M, Koh P, Burns W, Jandeleit-Dahm K, Watson A, Saleem M, Goodall GJ, Twigg SM, Cooper ME et al (2010a) E-cadherin expression is regulated by miR-192/215 by a mechanism that is independent of the profibrotic effects of transforming growth factor-beta. Diabetes 59:1794–1802

    Article  PubMed  CAS  Google Scholar 

  • Wang G, Kwan BC, Lai FM, Choi PC, Chow KM, Li PK, Szeto CC (2010b) Intrarenal expression of microRNAs in patients with IgA nephropathy. Lab Invest 90:98–103

    Article  PubMed  CAS  Google Scholar 

  • Wang G, Kwan BC, Lai FM, Choi PC, Chow KM, Li PK, Szeto CC (2010c) Intrarenal expression of miRNAs in patients with hypertensive nephrosclerosis. Am J Hypertens 23:78–84

    Article  PubMed  CAS  Google Scholar 

  • Wang B, Koh P, Winbanks C, Coughlan MT, McClelland A, Watson A, Jandeleit-Dahm K, Burns WC, Thomas MC, Cooper ME et al (2011) miR-200a prevents renal fibrogenesis through repression of TGF-{beta}2 expression. Diabetes 60:280–287

    Article  PubMed  CAS  Google Scholar 

  • Xin X, Chen S, Khan ZA, Chakrabarti S (2007) Akt activation and augmented fibronectin production in hyperhexosemia. Am J Physiol Endocrinol Metab 293:E1036–1044

    Article  PubMed  CAS  Google Scholar 

  • Xue C, Plieth D, Venkov C, Xu C, Neilson EG (2003) The gatekeeper effect of epithelial-mesenchymal transition regulates the frequency of breast cancer metastasis. Cancer Res 63:3386–3394

    PubMed  CAS  Google Scholar 

  • Yamamoto T, Nakamura T, Noble NA, Ruoslahti E, Border WA (1993) Expression of transforming growth factor beta is elevated in human and experimental diabetic nephropathy. Proc Natl Acad Sci USA 90:1814–1818

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto T, Noble NA, Cohen AH, Nast CC, Hishida A, Gold LI, Border WA (1996) Expression of transforming growth factor-beta isoforms in human glomerular diseases. Kidney Int 49:461–469

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto T, Watanabe T, Ikegaya N, Fujigaki Y, Matsui K, Masaoka H, Nagase M, Hishida A (1998) Expression of types I, II, and III TGF-beta receptors in human glomerulonephritis. J Am Soc Nephrol 9:2253–2261

    PubMed  CAS  Google Scholar 

  • Yang J, Liu Y (2001) Dissection of key events in tubular epithelial to myofibroblast transition and its implications in renal interstitial fibrosis. Am J Pathol 159:1465–1475

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Liu Y (2002) Blockage of tubular epithelial to myofibroblast transition by hepatocyte growth factor prevents renal interstitial fibrosis. J Am Soc Nephrol 13:96–107

    PubMed  CAS  Google Scholar 

  • Yang J, Dai C, Liu Y (2001) Systemic administration of naked plasmid encoding hepatocyte growth factor ameliorates chronic renal fibrosis in mice. Gene Ther 8:1470–1479

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Dai C, Liu Y (2002a) Hepatocyte growth factor gene therapy and angiotensin II blockade synergistically attenuate renal interstitial fibrosis in mice. J Am Soc Nephrol 13:2464–2477

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Shultz RW, Mars WM, Wegner RE, Li Y, Dai C, Nejak K, Liu Y (2002b) Disruption of tissue-type plasminogen activator gene in mice reduces renal interstitial fibrosis in obstructive nephropathy. J Clin Invest 110:1525–1538

    PubMed  CAS  Google Scholar 

  • Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, Savagner P, Gitelman I, Richardson A, Weinberg RA (2004) Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117:927–939

    Article  PubMed  CAS  Google Scholar 

  • Yokoi H, Sugawara A, Mukoyama M, Mori K, Makino H, Suganami T, Nagae T, Yahata K, Fujinaga Y, Tanaka I et al (2001) Role of connective tissue growth factor in profibrotic action of transforming growth factor-beta: a potential target for preventing renal fibrosis. Am J Kidney Dis 38:S134–138

    Article  PubMed  CAS  Google Scholar 

  • Yokoi H, Mukoyama M, Nagae T, Mori K, Suganami T, Sawai K, Yoshioka T, Koshikawa M, Nishida T, Takigawa M et al (2004) Reduction in connective tissue growth factor by antisense treatment ameliorates renal tubulointerstitial fibrosis. J Am Soc Nephrol 15:1430–1440

    Article  PubMed  CAS  Google Scholar 

  • Yook JI, Li XY, Ota I, Hu C, Kim HS, Kim NH, Cha SY, Ryu JK, Choi YJ, Kim J et al (2006) A Wnt-Axin2-GSK3beta cascade regulates Snail1 activity in breast cancer cells. Nat Cell Biol 8:1398–1406

    Article  PubMed  CAS  Google Scholar 

  • Yu L, Border WA, Huang Y, Noble NA (2003) TGF-beta isoforms in renal fibrogenesis. Kidney Int 64:844–856

    Article  PubMed  CAS  Google Scholar 

  • Yu W, Kamara H, Svoboda KK (2008) The role of twist during palate development. Dev Dyn 237:2716–2725

    Article  PubMed  CAS  Google Scholar 

  • Zavadil J, Bottinger EP (2005) TGF-beta and epithelial-to-mesenchymal transitions. Oncogene 24:5764–5774

    Article  PubMed  CAS  Google Scholar 

  • Zavadil J, Cermak L, Soto-Nieves N, Bottinger EP (2004) Integration of TGF-beta/Smad and Jagged1/Notch signalling in epithelial-to-mesenchymal transition. EMBO J 23:1155–1165

    Article  PubMed  CAS  Google Scholar 

  • Zavadil J, Narasimhan M, Blumenberg M, Schneider RJ (2007) Transforming growth factor-beta and microRNA:mRNA regulatory networks in epithelial plasticity. Cells Tissues Organs 185:157–161

    Article  PubMed  CAS  Google Scholar 

  • Zeisberg M, Duffield JS (2010) Resolved: EMT produces fibroblasts in the kidney. J Am Soc Nephrol 21:1247–1253

    Article  PubMed  Google Scholar 

  • Zeisberg M, Kalluri R (2004) The role of epithelial-to-mesenchymal transition in renal fibrosis. J Mol Med 82:175–181

    Article  PubMed  Google Scholar 

  • Zeisberg M, Neilson EG (2009) Biomarkers for epithelial-mesenchymal transitions. J Clin Invest 119:1429–1437

    Article  PubMed  CAS  Google Scholar 

  • Zeisberg M, Bonner G, Maeshima Y, Colorado P, Muller GA, Strutz F, Kalluri R (2001a) Renal fibrosis: collagen composition and assembly regulates epithelial-mesenchymal transdifferentiation. Am J Pathol 159:1313–1321

    Article  PubMed  CAS  Google Scholar 

  • Zeisberg M, Strutz F, Muller GA (2001b) Renal fibrosis: an update. Curr Opin Nephrol Hypertens 10:315–320

    Article  PubMed  CAS  Google Scholar 

  • Zeisberg M, Maeshima Y, Mosterman B, Kalluri R (2002) Renal fibrosis. Extracellular matrix microenvironment regulates migratory behavior of activated tubular epithelial cells. Am J Pathol 160:2001–2008

    Article  PubMed  CAS  Google Scholar 

  • Zeisberg M, Bottiglio C, Kumar N, Maeshima Y, Strutz F, Muller GA, Kalluri R (2003a) Bone morphogenic protein-7 inhibits progression of chronic renal fibrosis associated with two genetic mouse models. Am J Physiol Renal Physiol 285:F1060–1067

    PubMed  CAS  Google Scholar 

  • Zeisberg M, Hanai J, Sugimoto H, Mammoto T, Charytan D, Strutz F, Kalluri R (2003b) BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nature Med 9:964–968

    Article  PubMed  CAS  Google Scholar 

  • Zeisberg EM, Tarnavski O, Zeisberg M, Dorfman AL, McMullen JR, Gustafsson E, Chandraker A, Yuan X, Pu WT, Roberts AB et al (2007a) Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med 13:952–961

    Article  PubMed  CAS  Google Scholar 

  • Zeisberg M, Yang C, Martino M, Duncan MB, Rieder F, Tanjore H, Kalluri R (2007b) Fibroblasts derive from hepatocytes in liver fibrosis via epithelial to mesenchymal transition. J Biol Chem 282:23337–23347

    Article  PubMed  CAS  Google Scholar 

  • Zeisberg EM, Potenta SE, Sugimoto H, Zeisberg M, Kalluri R (2008) Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition. J Am Soc Nephrol 19:2282–2287

    Article  PubMed  Google Scholar 

  • Zhang Z, Zhang Y, Ning G, Deb DK, Kong J, Li YC (2008) Combination therapy with AT1 blocker and vitamin D analog markedly ameliorates diabetic nephropathy: blockade of compensatory renin increase. Proc Natl Acad Sci USA 105:15896–15901

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Deb DK, Kong J, Ning G, Wang Y, Li G, Chen Y, Zhang Z, Strugnell S, Sabbagh Y et al (2009) Long-term therapeutic effect of vitamin d analog doxercalciferol on diabetic nephropathy: strong synergism with AT1 receptor antagonist. Am J Physiol Renal Physiol 297:F791–801

    Article  PubMed  CAS  Google Scholar 

  • Ziyadeh FN (2004) Mediators of diabetic renal disease: the case for tgf-Beta as the major mediator. J Am Soc Nephrol 15(Suppl 1):S55–57

    Article  PubMed  CAS  Google Scholar 

  • Ziyadeh FN, Hoffman BB, Han DC, Iglesias-De La Cruz MC, Hong SW, Isono M, Chen S, McGowan TA, Sharma K (2000) Long-term prevention of renal insufficiency, excess matrix gene expression, and glomerular mesangial matrix expansion by treatment with monoclonal antitransforming growth factor-beta antibody in db/db diabetic mice. Proc Natl Acad Sci USA 97:8015–8020

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phillip Kantharidis.

Additional information

Support is acknowledged from the National Health and Medical Research Council of Australia (NHMRC526663).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carew, R.M., Wang, B. & Kantharidis, P. The role of EMT in renal fibrosis. Cell Tissue Res 347, 103–116 (2012). https://doi.org/10.1007/s00441-011-1227-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-011-1227-1

Keywords

Navigation