Skip to main content

Advertisement

Log in

Expression of the clock genes Per1 and Bmal1 during follicle development in the rat ovary. Effects of gonadotropin stimulation and hypophysectomy

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Daily oscillations of clock genes have recently been demonstrated in the ovaries of several species. Clock gene knockout or mutant mice demonstrate a variety of reproductive defects. Accumulating evidence suggests that these rhythms act to synchronise the expression of specific ovarian genes to hypothalamo-pituitary signals and that they are regulated by one or both of the gonadotropins. The aim of this study has been to examine the spatio-temporal expression of the clock genes Per1 and Bmal1 during gonadotropin-independent and gonadotropin-dependent follicle development in the rat ovary. We have examined the ovaries of prepubertal rats, of prepubertal rats stimulated with equine chorionic gonadotropin (eCG)/human chorionic gonadotropin (hCG) and of hypophysectomised adult animals. Using quantitative reverse transcription with the polymerase chain reaction, in situ hybridisation histochemistry and immunohistochemistry, we have demonstrated that the expression of the two clock genes is low and arrhythmic in ovarian cells during early gonadotropin-independent follicle development in prepubertal animals and in hypophysectomised animals. We have also demonstrated that the expression of the clock genes becomes rhythmic following eCG stimulation in the theca interna cells and the secondary interstitial cells and that, following additional hCG stimulation, the expression of the clock genes also becomes rhythmic in the granulosa cells of preovulatory follicles. These findings link the initiation of clock gene rhythms in the rat ovary to the luteinising hormone receptor and suggest a functional link to androgen and progesterone production. In hypophysectomised animals, rhythmic clock gene expression is also observed in the corpora lutea and in secondary interstitial cells demonstrating that, in these compartments, entrainment of clock gene rhythms is gonadotropin-independent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alvarez JD, Hansen A, Ord T, Bebas P, Chappell PE, Giebultowicz JM, Williams C, Moss S, Sehgal A (2008) The circadian clock protein BMAL1 is necessary for fertility and proper testosterone production in mice. J Biol Rhythms 23:26–36

    Article  PubMed  CAS  Google Scholar 

  • Ball GF (2007) The ovary knows more than you think! New views on clock genes and the positive feedback control of luteinizing hormone. Endocrinology 148:3029–3030

    Article  PubMed  CAS  Google Scholar 

  • Boden MJ, Varcoe TJ, Voultsios A, Kennaway DJ (2010) Reproductive biology of female Bmal1 null mice. Reproduction 139:1077–1090

    Article  PubMed  CAS  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step methods of RNA isolation by acid guanidinum thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  PubMed  CAS  Google Scholar 

  • Chu G, Yoshida K, Narahara S, Uchikawa M, Kawamura M, Yamauchi N, Xi Y, Shigeyoshi Y, Hashimoto S, Hattori MA (2011) Alterations of circadian clockworks during differentiation and apoptosis of rat ovarian cells. Chronobiol Int 28:477–487

    Article  PubMed  CAS  Google Scholar 

  • Chu G, Misawa I, Chen H, Yamauchi N, Shigeyoshi Y, Hashimoto S, Hattori MA (2012) Contribution of FSH and triiodothyronine to the development of circadian clocks during granulosa cell maturation. Am J Physiol Endocrinol Metab 302:E645-E653

    Article  PubMed  CAS  Google Scholar 

  • Dibner C, Schibler U, Albrecht U (2010) The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol 72:517–549

    Article  PubMed  CAS  Google Scholar 

  • Dolatshad H, Campbell EA, O’Hara L, Maywood ES, Hastings MH, Johnson MH (2006) Developmental and reproductive performance in circadian mutant mice. Hum Reprod 21:68–79

    Article  PubMed  CAS  Google Scholar 

  • Erickson GF, Magoffin DA, Dyer CA, Hofeditz C (1985) The ovarian androgen producing cells: a review of structure/function relationships. Endocr Rev 6:371–399

    Article  PubMed  CAS  Google Scholar 

  • Fahrenkrug J, Hannibal J (1998) Pituitary adenylate cyclase activating polypeptide immunoreactivity in capsaicin-sensitive nerve fibres supplying the rat urinary tract. Neuroscience 83:1261–1272

    Article  PubMed  CAS  Google Scholar 

  • Fahrenkrug J, Georg B, Hannibal J, Hindersson P, Gras S (2006) Diurnal rhythmicity of the clock genes Per1 and Per2 in the rat ovary. Endocrinology 147:3769–3776

    Article  PubMed  CAS  Google Scholar 

  • Fahrenkrug J, Hannibal J, Georg B (2008) Diurnal rhythmicity of the canonical clock genes Per1, Per2 and Bmal1 in the rat adrenal gland is unaltered after hypophysectomy. J Neuroendocrinol 20:323–329

    Article  PubMed  CAS  Google Scholar 

  • Gräs S, Hannibal J, Fahrenkrug J (1999) Pituitary adenylate cyclase-activating polypeptide is an auto- or paracrine stimulator of acute progesterone production and subsequent luteinization in cultured periovulatory granulosa/lutein cells. Endocrinology 140:2199–2205

    Article  PubMed  Google Scholar 

  • Greenwald GS, Shyamal KR (1994) Follicular development and its control. In: Knobil E, Neill JD (eds) The physiology of reproduction. Raven, New York, pp 655–660

    Google Scholar 

  • Hannibal J, Fahrenkrug J (2004) Melanopsin containing retinal ganglion cells are light responsive from birth. Neuroreport 15:2317–2320

    Article  PubMed  CAS  Google Scholar 

  • He PJ, Hirata M, Yamauchi N, Hashimoto S, Hattori MA (2007a) Gonadotropic regulation of circadian clockwork in rat granulosa cells. Mol Cell Biochem 302:111–118

    Article  PubMed  CAS  Google Scholar 

  • He PJ, Hirata M, Yamauchi N, Hashimoto S, Hattori MA (2007b) The disruption of circadian clockwork in differentiating cells from rat reproductive tissues as identified by in vitro real-time monitoring system. J Endocrinol 193:413–420

    Article  PubMed  CAS  Google Scholar 

  • Karman BN, Tischkau SA (2006) Circadian clock gene expression in the ovary: effects of luteinizing hormone. Biol Reprod 75:624–632

    Article  PubMed  CAS  Google Scholar 

  • Kennaway DJ, Boden MJ, Voultsios A (2005) Reproductive performance in female Clock Delta19 mutant mice. Reprod Fertil Dev 16:801–810

    Article  Google Scholar 

  • Kovanen L, Saarikoski ST, Aromaa A, Lönnqvist J, Partonen T (2010) ARNTL (BMAL1) and NPAS2 gene variants contribute to fertility and seasonality. PLoS One 5:e10007

    Article  PubMed  Google Scholar 

  • Lowrey PL, Takahashi JS (2004) Mammalian circadian biology: elucidating genome-wide levels of temporal organization. Annu Rev Genomics Hum Genet 5:407–441

    Article  PubMed  CAS  Google Scholar 

  • Magoffin DA (2005) Ovarian theca cell. Int J Biochem Cell Biol 37:1344–1349

    Article  PubMed  CAS  Google Scholar 

  • Manna PR, Dyson MT, Stocco DM (2009) Regulation of the steroidogenic acute regulatory protein gene expression: present and future perspectives. Mol Hum Reprod 15:321–333

    Article  PubMed  CAS  Google Scholar 

  • McGee EA, Hsueh AJW (2000) Initial and cyclic recruitment of ovarian follicles. Endocr Rev 21:200–214

    Article  PubMed  CAS  Google Scholar 

  • Miller BH, Olson SL, Turek FW, Levine JE, Horton TH, Takahashi JS (2004) Circadian clock mutation disrupts estrous cyclicity and maintenance of pregnancy. Curr Biol 14:1367–1373

    Article  PubMed  CAS  Google Scholar 

  • Miller BH, Olson SL, Levine JE, Turek FW, Horton TH, Takahashi JS (2006) Vasopressin regulation of the proestrous luteinizing hormone surge in wild-type and clock mutant mice. Biol Reprod 75:778–784

    Article  PubMed  CAS  Google Scholar 

  • Nakamura TJ, Sellix MT, Kudo T, Nakao N, Yoshimura T, Ebihara S, Colwell CS, Block GD (2010) Influence of the estrous cycle on clock gene expression in reproductive tissues: effects of fluctuating ovarian steroid hormone levels. Steroids 75:203–212

    Article  PubMed  CAS  Google Scholar 

  • Nakao N, Yasuo S, Nishimura A, Yamamura T, Watanabe T, Anraku T, Okano T, Fukada Y, Sharp PJ, Ebihara S, Yoshimura T (2007) Circadian clock gene regulation of steroidogenic acute regulatory protein gene expression in preovulatory ovarian follicles. Endocrinology 148:3031–3038

    Article  PubMed  CAS  Google Scholar 

  • Nelson W, Tong Y, Lee J, Halberg F (1979) Methods for cosinor-rhythmometry. Chronobiologica 6:305–323

    CAS  Google Scholar 

  • Nielsen HS, Hannibal J, Knudsen SM, Fahrenkrug J (2001) Pituitary adenylate cyclase-activating polypeptide induces period1 and period2 gene expression in the rat suprachiasmatic nucleus during late night. Neuroscience 103:433–441

    Article  PubMed  CAS  Google Scholar 

  • Okamura H (2004) Clock genes in cell clocks: roles, actions, and mysteries. J Biol Rhythms 19:388–399

    Article  PubMed  CAS  Google Scholar 

  • Pilorz V, Steinlechner S (2008) Low reproductive success in Per1 and Per2 mutant mouse females due to accelerated ageing? Reproduction 135:559–568

    Article  PubMed  CAS  Google Scholar 

  • Preitner N, Damiola F, Luis LM, Zakany J, Duboule D, Albrecht U, Schibler U (2002) The orphan nuclear receptor REV-ERB[alpha] controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110:251–260

    Article  PubMed  CAS  Google Scholar 

  • Ratajczak CK, Boehle KL, Muglia LJ (2009) Impaired steroidogenesis and implantation failure in Bmal1 -/- mice. Endocrinology 150:1879–1885

    Article  PubMed  CAS  Google Scholar 

  • Reppert SM, Weaver DR (2001) Molecular analysis of mammalian circadian rhythms. Ann Rev Physiol 63:647–676

    Article  CAS  Google Scholar 

  • Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418:935–941

    Article  PubMed  CAS  Google Scholar 

  • Ronen-Fuhrmann T, Timberg R, King SR, Hales KH, Hales DB, Stocco DM, Orly J (1998) Spatio-temporal expression patterns of steroidogenic acute regulatory protein (StAR) during follicular development in the rat ovary. Endocrinology 139:303–315

    Article  PubMed  CAS  Google Scholar 

  • Schirman-Hildesheim TD, Gershon E, Litichever N, Galiani D, Ben-Aroya N, Dekel N, Koch Y (2008) Local production of the gonadotropic hormones in the rat ovary. Mol Cell Endocrinol 282:32–38

    Article  PubMed  CAS  Google Scholar 

  • Sellix MT, Menaker M (2010) Circadian clocks in the ovary. Trends Endocrinol Metab 21:628–636

    Article  PubMed  CAS  Google Scholar 

  • Sellix MT, Yoshikawa T, Menaker M (2010) A circadian egg timer gates ovulation. Curr Biol 20:R266–R267

    Article  PubMed  CAS  Google Scholar 

  • Shimizu T, Hirai Y, Murayama C, Miyamoto A, Miyazaki H, Miyazaki K (2011) Circadian clock genes Per2 and clock regulate steroid production, cell proliferation, and luteinizing hormone receptor transcription in ovarian granulosa cells. Biochem Biophys Res Commun 412:132–135

    PubMed  CAS  Google Scholar 

  • Smith PE (1930) Hypophysectomy and a replacement therapy in the rat. Am J Anat 45:205–273

    Article  Google Scholar 

  • Storch KF, Lipan O, Leykin I, Viswanathan N, Davis FC, Wong WH, Weitz CJ (2002) Extensive and divergent circadian gene expression in liver and heart. Nature 417:78–83

    Article  PubMed  CAS  Google Scholar 

  • Taya K, Greenwald GS (1982) In vivo and in vitro ovarian steroidogenesis in the long term hypophysectomized rat. Endocrinology 110:390–397

    Article  PubMed  CAS  Google Scholar 

  • Taya K, Saidapur SK, Greenwald GS (1980) Interstitium: site of steroid synthesis in the ovary of the long term hypophysectomized hamster. Biol Reprod 22:307–318

    Article  PubMed  CAS  Google Scholar 

  • Tischkau SA, Howell RE, Hickok JR, Krager SL, Bahr JM (2010) The luteinizing hormone surge regulates circadian clock gene expression in the chicken ovary. Chronobiol Int 28:10–20

    Article  Google Scholar 

  • Tobback J, Boerjan B, Vandersmissen HP, Huybrechts R (2011) The circadian clock genes affect reproductive capacity in the desert locust Schistocerca gregaria. Insect Biochemistry and Molecular Biology 41:313–321

    Article  PubMed  CAS  Google Scholar 

  • Yoshikawa T, Sellix M, Pezuk P, Menaker M (2009) Timing of the ovarian circadian clock is regulated by gonadotropins. Endocrinology 150:4338–4347

    Article  PubMed  CAS  Google Scholar 

  • Young JM, McNeilly AS (2010) Theca: the forgotten cell of the ovarian follicle. Reproduction 140:489–504

    Article  PubMed  CAS  Google Scholar 

  • Zvonic S, Ptitsyn AA, Conrad SA, Scott LK, Floyd ZE, Kilroy G (2006) Characterization of peripheral circadian clocks in adipose tissues. Diabetes 55:962–970

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The skillful technical assistance of Anita Hansen, Juliano Olsen and Yvonne Søndergaard is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Søren Gräs.

Additional information

This study was supported by a grant from the Danish Biotechnology Centre for Cellular Communication.

The authors have no conflict of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gräs, S., Georg, B., Jørgensen, H.L. et al. Expression of the clock genes Per1 and Bmal1 during follicle development in the rat ovary. Effects of gonadotropin stimulation and hypophysectomy. Cell Tissue Res 350, 539–548 (2012). https://doi.org/10.1007/s00441-012-1489-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-012-1489-2

Keywords

Navigation