Skip to main content
Log in

Individual and combined effects of multiple pathogens on Pacific treefrogs

  • Community ecology - Original Paper
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

In nature, individual hosts often encounter multiple pathogens simultaneously, which can lead to additive, antagonistic, or synergistic effects on hosts. Synergistic effects on infection prevalence or severity could greatly affect host populations. However, ecologists and managers often overlook the influence of pathogen combinations on hosts. This is especially true in amphibian conservation, even though multiple pathogens coexist within amphibian populations, and several pathogens have been implicated in amphibian population declines and extinctions. Using an amphibian host, Pseudacris regilla (Pacific treefrog), we experimentally investigated interactive effects among three pathogens: the trematode Ribeiroia sp. (hereafter, Ribeiroia), the fungus Batrachochytrium dendrobatidis (hereafter, BD), and the water mold Achlya flagellata. We detected no effects of A. flagellata, but did find effects of Ribeiroia and BD that varied depending on context. Low doses of Ribeiroia caused relatively few malformations, while higher Ribeiroia doses caused numerous deformities dominated by missing and reduced limbs and limb elements. Exposure to low doses of BD accelerated larval host development, despite there being no detectable BD infections, while exposure to higher BD doses caused infection but did not alter developmental rate. Hosts exposed to both Ribeiroia and BD exhibited the highest mortality, although overall evidence of interactive effects of multiple pathogens was limited. We suggest further research on the influence of multi-pathogen assemblages on amphibians, particularly under a variety of ecological conditions and with a wider diversity of hosts and pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Becker MH, Harris RN (2010) Cutaneous bacteria of the redback salamander prevent morbidity associated with a lethal disease. PLoS One 5:e10957

    Article  PubMed  Google Scholar 

  • Belden LB, Harris RN (2007) Infectious diseases in wildlife: the community ecology context. Front Ecol Environ 5:533–539

    Article  Google Scholar 

  • Bentwich Z, Kalinkovich A, Weisman Z, Borkow G, Beyers N, Beyers (1999) Can eradication of helminthic infections change the face of AIDS and tuberculosis? Immunol Today 20:485–487

  • Berger L, Speare R, Daszak P, Green DE, Cunningham AA, Goggin CL, Slocombe R, Ragan MA, Hyatt AH, McDonald KR, Hines HB, Lips KR, Marantelli G, Parkes H (1998) Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. Proc Natl Acad Sci USA 95:9031–9036

    Article  PubMed  CAS  Google Scholar 

  • Bisht GS, Bisht D, Joshi C, Khulbe RD (1996) Potential threat to reservoir fishery by fungi in Kumaun Himalaya, India. Curr Sci India 71:720–723

    Google Scholar 

  • Blaustein AR, Johnson PTJ (2003) The complexity of deformed amphibians. Front Ecol Environ 1:87–94

    Article  Google Scholar 

  • Blaustein AR, Hatch A, Belden LK, Wildy EL (2001) Influence of abiotic and biotic factors on amphibians in ephemeral ponds with special reference to long-toed salamanders (Amybstoma macrodactylum). Isr J Zool 47:333–346

    Article  Google Scholar 

  • Blaustein AR, Romansic JM, Scheesele EA, Han BA, Pessier AP, Longcore LE (2005) Interspecific variation in susceptibility of frog tadpoles to the pathogenic fungus Batrachochytrium dendrobatidis. Conserv Biol 19:1460–1468

    Article  Google Scholar 

  • Bowerman J, Johnson PTJ (2003) Timing of trematode-related malformations in Oregon spotted frogs and Pacific treefrogs. Northwest Nat 82:142–145

    Article  Google Scholar 

  • Boyle DG, Boyle DB, Olsen V, Morgan JAT, Hyatt AD (2004) Rapid quantitative detection of chytridiomycosis (Batrachochytrium dendrobatidis) in amphibian samples using real-time Taqman PCR assay. Dis Aquat Org 60:133–139

    Article  Google Scholar 

  • Briggs CJ (1993) Competition among parasitoid species on a stage-structured host and its effect on host suppression. Am Nat 141:372–397

    Article  Google Scholar 

  • Crump ML (1989a) Effect of habitat drying on developmental time and size at metamorphosis in Hyla pseudopuma. Copeia 1989:794–797

    Article  Google Scholar 

  • Crump ML (1989b) Life history consequences of feeding versus non-feeding in a facultatively non-feeding toad larva. Oecologia 78:486–489

    Article  Google Scholar 

  • Cunningham AA, Langton TES, Bennet PM, Lewin JF, Drury SEN, Gough RE, Macgregor SK (1996) Pathological and microbiological findings from incidents of unusual mortality of the common frog (Rana temporaria). Philos Trans R Soc Lond B 351:1539–1557

    Article  CAS  Google Scholar 

  • Daszak P, Cunningham AA, Hyatt AD (2003) Infectious disease and amphibian population declines. Divers Distrib 9:141–150

    Article  Google Scholar 

  • Davidson EW, Parris M, Collins JP, Longcore JE, Pessier AP, Brunner J (2003) Pathogenicity and transmission of chytridiomycosis in tiger salamanders (Ambystoma tigrinum). Copeia 2003:601–607

    Article  Google Scholar 

  • Duffus ALJ (2009) Chytrid blinders: what other disease risks to amphibians are we missing? EcoHealth 6:335–339

  • Firth D (1993) Bias reduction in maximum likelihood estimates. Biometrika 80:27–38

    Article  Google Scholar 

  • Fisher MC, Garner TWJ, Walker SF (2009) Emergence of Batrachochytrium and amphibian chytridiomycosis in space, time, and host. Annu Rev Microbiol 63:291–310

    Article  PubMed  CAS  Google Scholar 

  • Garcia TS, Romansic JM, Blaustein AR (2006) Survival of three species of anuran metamorphs exposed to UV-B radiation and the pathogenic fungus Batrachochytrium dendrobatadis. Dis Aquat Org 72:163–169

    Article  PubMed  CAS  Google Scholar 

  • Garner TWJ, Walker S, Bosch J, Leech S, Rowcliffe JM, Cunningham AA, Fisher MC (2009) Life history tradeoffs influence mortality associated with the amphibian pathogen Batrachochytrium dendrobatidis. Oikos 118:783–791

    Article  Google Scholar 

  • Gomez-Mestre I, Touchon JC, Warkentin KM (2006) Amphibian embryo and parental defenses and a larval predator reduce egg mortality from water mold. Ecology 87:2570–2581

    Article  PubMed  Google Scholar 

  • Gosner KL (1960) A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16:183–190

    Google Scholar 

  • Green DE, Converse KA (2005) Diseases of amphibian eggs and embryos. In: Majumdar S, Huffman J, Brenner F, Panah A (eds) Wildlife diseases: landscape epidemiology, spatial distribution and utilization of remote sensing technology. Pennsylvania Academy of Science, Easton, pp 62–71

    Google Scholar 

  • Green DE, Converse KA, Schrader AK (2002) Epizootiology of sixty-four amphibian morbidity and mortality events in the USA, 1996–2001. Ann NY Acad Sci 969:323–339

    Article  PubMed  Google Scholar 

  • Greer AL, Berrill M, Wilson PJ (2005) Five amphibian mortality events associated with ranavirus infection in south central Ontario, Canada. Dis Aquat Org 67:9–14

    Article  PubMed  Google Scholar 

  • Heinze G (2006) A comparative investigation of methods for logistic regression with separated or nearly separated data. Stat Med 25:4216–4226

    Article  PubMed  Google Scholar 

  • Johnson TW Jr (1956) The Genus Achlya: morphology and taxonomy. University of Michigan Press, Ann Arbor

    Google Scholar 

  • Johnson PTJ, Buller I (2010) Parasite competition hidden by correlated coinfection: using surveys and experiments to understand parasite interactions. doi:10.1890/10-0570.1

  • Johnson PTJ, Hartson RB (2009) All hosts are not equal: explaining differential patterns of malformations in an amphibian community. J Anim Ecol 78:191–201

    Article  PubMed  Google Scholar 

  • Johnson PTJ, Lunde KB (2005) Parasite infection and limb malformations: a growing problem in amphibian conservation. In: Lanoo M (ed) Amphibian declines: the conservation status of United States species. University of California Press, Berkeley, pp 124–138

    Google Scholar 

  • Johnson PTJ, Lunde KB, Ritchie EG, Launer AE (1999) The effect of trematode infection on amphibian limb development and survivorship. Science 284:802–804

    Article  PubMed  CAS  Google Scholar 

  • Johnson PTJ, Lunde KB, Haight RW, Bowerman J, Blaustein AR (2001) Ribeiroia ondatrae (Trematoda: Digenea) infection induces severe limb malformations in western toads (Bufo boreas). Can J Zool 79:370–379

    Google Scholar 

  • Johnson PTJ, Lunde KB, Thurman EM, Ritchie EG, Wray SN, Sutherland DR, Kapfer JM, Frest TJ, Bowerman J, Blaustein AR (2002a) Parasite (Ribeiroia ondatrae) infection linked to amphibian malformations in the western United States. Ecol Monogr 72:151–168

    Article  Google Scholar 

  • Johnson TW Jr, Seymour RL, Padgett, DE (2002b) Biology and systematics of the Saprolegniaceae. On-line publication: http://dl.uncw.edu/digilib/biology/fungi/taxonomy%20and%20systematics/padgett%20book/

  • Johnson PTJ, Lunde KB, Zelmer DA, Werner JK (2003) Limb deformities as an emerging parasitic disease in amphibians: evidence from museum specimens and resurvey data. Conserv Biol 17:1724–1737

    Article  Google Scholar 

  • Johnson PTJ, Sutherland DR, Kinsella JM, Lunde KB (2004) Review of the trematode genus Ribeiroia (Psilostomidae): ecology, life history and pathogenesis with special emphasis on the amphibian malformation problem. Adv Parasit 57:191–253

    Article  Google Scholar 

  • Johnson PTJ, Preu ER, Sutherland DR, Romansic J, Han B, Blaustein AR (2006) Adding infection to injury: synergistic effects of predation and parasitism on salamander limb malformations. Ecology 87:2227–2235

    Google Scholar 

  • Johnson PTJ, Chase JM, Dosch KL, Hartson RB, Gross JA, Larson DJ, Sutherland DR, Carpenter SR (2007) Aquatic eutrophication promotes pathogenic infection in amphibians. Proc Natl Acad Sci USA 104:15781–15786

    Article  PubMed  CAS  Google Scholar 

  • Johnson PTJ, Hartson RB, Larson DJ, Sutherland DR (2008) Diversity and disease: community structure drives parasite transmission and host fitness. Ecol Lett 11:1017–1026

    Article  PubMed  Google Scholar 

  • Jolles AE, Ezenwa VO, Etienne RS, Turner WC, Olff H (2008) Interactions between macroparasites and microparasites drive infection patterns in free-ranging African buffalo. Ecology 89:2239– 2250

    Google Scholar 

  • Joly DO, Messier F (2005) The effect of bovine tuberculosis and brucellosis on reproduction and survival of wood bison in Wood Buffalo National Park. J Anim Ecol 74:543–551

    Article  Google Scholar 

  • Kerby JL, Storfer A (2009) Combined effects of atrazine and chlorpyrifos on susceptibility of the tiger salamander to Ambystoma tigrinum virus. Ecohealth 6:91–98

    Article  PubMed  Google Scholar 

  • Khulbe RD (1992) Watermolds and their activity in Kumaun Himalaya, India. Water Sci Technol 26:2595–2598

    Google Scholar 

  • Khulbe RD (1994) A world monograph of parasitic watermolds. Shree Almora, Almora

    Google Scholar 

  • Khulbe RD, Joshi C, Bisht GS (1995) Fungal diseases of fish in Nanak Sagar. Mycopathologia 130:71–74

    Article  PubMed  CAS  Google Scholar 

  • Kiesecker JM (2002) Synergism between trematode infection and pesticide exposure: a link to amphibian limb deformities in nature? Proc Natl Acad Sci USA 99:9900–9904

    Article  PubMed  CAS  Google Scholar 

  • Kiesecker JM, Blaustein AR (1995) Synergism between UV-B radiation and a pathogen magnifies amphibian embryo mortality in nature. Proc Natl Acad Sci USA 92:11049–11052

    Article  PubMed  CAS  Google Scholar 

  • Kiesecker JM, Skelly DK, Beard KH, Pressier E (1999) Behavioral reduction of infection risk. Proc Natl Acad Sci USA 96:9165–9168

    Article  PubMed  CAS  Google Scholar 

  • Kilpatrick MA, Briggs CL, Daszak P (2010) The ecology and impact of chytridiomycosis: an emerging disease of amphibians. Trends Ecol Evol 25:109–118

    Article  PubMed  Google Scholar 

  • Knapp RA, Morgan JAT (2006) Tadpole mouthpart depigmentation as an accurate indicator of chytridiomycosis, an emerging disease of amphibians. Copeia 2006:188–197

    Article  Google Scholar 

  • Lam BA, Walke JB, Vredenburg VT, Harris RN (2010) Proportion of individuals with anti-Batrachochytrium dendrobatidis skin bacteria is associated with population persistence in the frog Rana muscosa. Biol Conserv 143:529–531

    Article  Google Scholar 

  • Munson L, Terio KA, Kock R, Mlengeya T, Roelke ME, Dubovi E, Summers B, Sinclair ARE, Packer C (2008) Climate extremes promote fatal co-infections during canine distemper epidemics in African lions. PLoS One 3:e2545

    Article  PubMed  Google Scholar 

  • Newman RA (1988) Adaptive plasticity in development of Scaphiopus couchii tadpoles in desert ponds. Evolution 42:774–783

    Article  Google Scholar 

  • Nieto NC, Camann MA, Foley JE, Reiss JO (2007) Disease associated with integumentary and cloacal parasites in tadpoles of northern red-legged frog Rana aurora aurora. Dis Aquat Org 78:61–71

    Article  PubMed  Google Scholar 

  • Noga EJ (1996) Fish disease diagnosis and treatment. Mosby, St. Louis

    Google Scholar 

  • Parmar MKB, Machin D (1996) Survival analysis: a practical approach. Wiley, New York

    Google Scholar 

  • Parris MJ, Baud DR (2004) Interactive effect of a heavy metal and chytridiomycosis on gray treefrog larvae (Hyla chrysoscelis). Copeia 2004:344–350

    Article  Google Scholar 

  • Parris MJ, Beaudoin JG (2004) Chytridiomycosis impacts predator-prey interactions in larval amphibian communities. Oecologia 140:626–632

    Article  PubMed  Google Scholar 

  • Parris MJ, Cornelius TO (2004) Fungal pathogen causes competitive and developmental stress in larval amphibian communities. Ecology 85:3385–3395

    Article  Google Scholar 

  • Pearl CA, Bowerman J, Adams MJ, Chelgren ND (2009) Widespread occurrence of the chytrid fungus Batrachochytrium dendrobatidis on Oregon spotted frogs (Rana pretiosa). Ecohealth 6:209–218

    Article  PubMed  Google Scholar 

  • Petney TN, Andrews RH (1998) Multiparasite communities in animals and humans: frequency, structure and pathogenic significance. Int J Parasitol 28:377–393

    Google Scholar 

  • Petranka JW, Sih A (1986) Environmental instability, competition, and density-dependent growth and survivorship of a stream-dwelling salamander. Ecology 67:729–736

    Article  Google Scholar 

  • Pfennig DW (2000) Effect of predator-prey phylogenetic similarity on the fitness consequences of predation: a trade-off between nutrition and disease? Am Nat 155:335–345

    Article  PubMed  Google Scholar 

  • Post G (1987) Mycotic diseases. In: Post GW (ed) Textbook of fish health. T.E.H., Neptune City, pp 73–83

    Google Scholar 

  • Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, Cambridge

    Google Scholar 

  • Rachowicz LJ, Vredenburg VT (2004) Transmission of Batrachochytrium dendrobatidis within and between amphibian life stages. Dis Aquat Org 61:75–83

    Article  PubMed  Google Scholar 

  • Rachowicz LJ, Knapp RA, Morgan JAT, Stice MJ, Vredenburg VT, Parker JM, Briggs CJ (2006) Emerging infectious disease as a proximate cause of amphibian mass mortality. Ecology 87:1671–1683

    Article  PubMed  Google Scholar 

  • Rohr JR, Elskus AA, Sheperd BS, Crowley PH, McCarthy TM, Niedzwiecki JH, Sager T, Sih A, Palmer BD (2004) Multiple stressors and salamanders: effects of an herbicide, food limitation, and hydroperiod. Ecol Appl 14:1028–1040

    Article  Google Scholar 

  • Rohr JR, Raffel TR, Romansic JM, McCallum H, Hudson PJ (2008a) Evaluating the links between climate, disease spread, and amphibian declines. Proc Natl Acad Sci USA 105:17436–17441

    Article  PubMed  CAS  Google Scholar 

  • Rohr JR, Raffel TR, Sessions SK, Hudson PJ (2008b) Understanding the net effects of pesticides on amphibian trematode infections. Ecol Appl 18:1743–1753

    Article  PubMed  Google Scholar 

  • Rohr JR, Schotthoefer AM, Raffel TR, Carrick HJ, Halstead N, Hoverman JT, Johnson CM, Johnson LB, Lieske C, Piwoni MD, Schoff PK, Beasley VR (2008c) Agrochemicals increase trematode infections in a declining amphibian species. Nature 7217:1235–1239

    Article  Google Scholar 

  • Rohr JR, Swan A, Raffel TR, Hudson PJ (2009) Parasites, info-disruption, and the ecology of fear. Oecologia 159:447–454

    Article  PubMed  Google Scholar 

  • Romansic JM, Diez KA, Higashi EM, Blaustein AR (2006) Effects of nitrate and the pathogenic water mold Saprolegnia on survival of amphibian larvae. Dis Aquat Org 68:235–243

    Article  PubMed  CAS  Google Scholar 

  • Romansic JM, Higashi EM, Diez KA, Blaustein AR (2007) Susceptibility of newly-metamorphosed frogs to a pathogenic water mold (Saprolegnia sp.). Herpetol J 17:161–166

    Google Scholar 

  • Romansic JM, Diez KA, Higashi EM, Johnson JE, Blaustein AR (2009) Effects of the pathogenic water mold Saprolegnia ferax on survival of amphibian larvae. Dis Aquat Org 83:187–193

    Article  PubMed  Google Scholar 

  • Schotthoefer AM, Koehler AV, Meteyer CU, Cole RA (2003) Influence of Ribeiroia ondatrae (Trematoda: Digenea) infection on limb development and survival of northern leopard frogs (Rana pipiens): effects of host-stage and parasite exposure level. Can J Zool 81:1144–1153

    Article  Google Scholar 

  • Semlitsch RD, Scott DE, Pechmann JHK (1988) Time and size at metamorphosis related to adult fitness in Ambystoma talpoideum. Ecology 69:184–192

    Article  Google Scholar 

  • Smith DC (1987) Adult recruitment in chorus frogs: effects of size and date at metamorphosis. Ecology 68:344–350

    Article  Google Scholar 

  • Sokol A (1984) Plasticity in the fine timing of metamorphosis in tadpoles of the hylid frog, Litoria ewingi. Copeia 1984:868–873

    Article  Google Scholar 

  • Srivastava GC, Srivastava RC (1975) Two fungal parasites of the eggs of Channa striatus (Bl.). Curr Sci India 44:817–818

    Google Scholar 

  • Srivastava GC, Srivastava RC (1976) Ability of Achlya flagellata Coker parasitising certain fresh water fishes. Geobios (Jodhpur) 3:139–140

    Google Scholar 

  • Tiffney WN, Wolf FT (1939) Achlya flagellata as a fish parasite. J Elisha Mitch Sci S 53:298–300

    Google Scholar 

  • Touchon JC, Gomez-Mestre I, Warkentin KM (2006) Hatching plasticity in two temperate anurans: responses to a pathogen and predation cues. Can J Zool 84:556–563

    Article  Google Scholar 

  • Warburg MR, Lewinson D, Rosenberg M (1994) Ontogenesis of amphibian epidermis. In: Heatwole H, Barthalmus G (eds) Amphibian biology. Volume 1: the integument. Surrey Beatty, Chipping Norton, pp 33–63

    Google Scholar 

  • Warkentin KM, Currie CR, Rehner SA (2001) Egg-killing fungus induces early hatching of red-eyed treefrog eggs. Ecology 82:2860–2869

    Article  Google Scholar 

  • Werner EE (1986) Amphibian metamorphosis: growth rate, predation risk, and the optimal size at transformation. Am Nat 128:319–341

    Article  Google Scholar 

  • Wilbur HM (1977) Density-dependent aspects of growth and metamorphosis in Bufo americanus. Ecology 58:196–200

    Article  Google Scholar 

  • Wilbur HM, Collins JP (1973) Ecological aspects of amphibian metamorphosis. Science 182:1305–1314

    Article  PubMed  CAS  Google Scholar 

  • Worthylake KM, Hovingh P (1989) Mass mortality of salamanders (Ambystoma tigrinum) by bacteria (Acinetobacter) in an oligotrophic seepage mountain lake. Great Basin Nat 49:364–372

    Google Scholar 

Download references

Acknowledgments

We thank J. Longcore for supplying BD isolates, J. Spatafora, C. Briggs, and the UC Berkeley Museum of Vertebrate Zoology for use of laboratory facilities, and A. Congelosi, N. Donn, M. Jones-Romansic, B. Fann, P. Michel, T. Pham, M. Saxon, K. Tonsfeld, and L. Vinueza for assistance. J.M.R. was supported by a United States Environmental Protection Agency Science to Achieve Results Fellowship (FP-91640201-0). Additional funding was provided by grants from The National Science Foundation (NSF) Integrated Research Challenges in Environmental Biology Program (DEB0213851 and IBN9977063) to A.R.B. and NSF (DEB-0809487), United States Department of Agriculture (NRI 2008-00622 and 2008-01785), and United States Environmental Protection Agency Science to Achieve Results (R833835) grants to J.R.R. P.T.J.J. was supported by a fellowship from the David and Lucile Packard Foundation and a grant from NSF (DEB-0841758). These experiments comply with the current laws of the United States and with Oregon State University animal care regulations. Animals were collected according to Oregon Department of Fish and Wildlife regulations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Romansic.

Additional information

Communicated by Ross Alford.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 104 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romansic, J.M., Johnson, P.T.J., Searle, C.L. et al. Individual and combined effects of multiple pathogens on Pacific treefrogs. Oecologia 166, 1029–1041 (2011). https://doi.org/10.1007/s00442-011-1932-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-011-1932-1

Keywords

Navigation