Skip to main content
Log in

Extent of innate dexterity and ambidexterity across handedness and gender: Implications for training in laparoscopic surgery

  • Published:
Surgical Endoscopy Aims and scope Submit manuscript

Abstract

Background

As innate dexterity is considered one of the important predictors of eventual operative competence, an experimental human factors study was conducted to determine innate dexterity and ambidexterity across handedness and gender.

Methods

50 medical students (right-handed males, left-handed males, and right-handed females) were recruited as participants in a study designed to assess innate dexterity and degree of ambidexterity for endoscopic manipulations in a validated virtual-reality simulator. All participants performed unilateral and bilateral tasks with both dominant and nondominant hands in random sequence. The outcome measures were execution time, extent of ambidexterity (ambidexterity index), aiming errors, and maximum tissue damage.

Results

Right-handed males exhibited a greater level of ambidexterity than left-handed males (p = 0.02 for path length, p = 0.001 for angular path) and right-handed females (p = 0.01 for path length, p = 0.02 for angular path), and more-efficient task performance as measured by execution time (p = 0.001 for males and p = 0.03 across gender). The task quality when executed by the dominant hand was best in right-handed males (p = 0.001 vs. left-dominant males and p = 0.03 across gender). No significant difference was observed in terms of precision control and fine movements (aiming errors and maximum tissue damage) between the three groups.

Conclusions

These findings indicate that training surgical curricula in laparoscopic surgery should be more flexible to accommodate the innate differences across handedness and gender.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Amunts K, Schleicher A, Steinmrtz H, Dabringhaus A, Roland PE, Zilles K (1996) Asymmetry in human motor cortex and Handedness. Neuroimage 4:216–222

    Article  PubMed  CAS  Google Scholar 

  2. Bradshaw JL, Nicholls MER Rogers MA (1998) An intermanual advantage for tactual matching. Cortex 34:763–770

    PubMed  CAS  Google Scholar 

  3. Schulze K, Luders E, Jancke L (2002) Intermanual transfer in a simple motor task. Cortex 38:805–815

    PubMed  Google Scholar 

  4. Gilbert AN, Wysocki CJ (1992) Hand preference and age in United States. Neuropsychologia 30:601–608

    Article  PubMed  CAS  Google Scholar 

  5. Peters M, Durding BM (1978) Handedness measured by finger tapping: A continuous variable. Can J Psychol 32:257–261

    PubMed  CAS  Google Scholar 

  6. Annett M (1996) Laterality and types of dyslexia. Neuroscience and Biobehav Rev 20:631–636

    Article  CAS  Google Scholar 

  7. Annett J, Annett M, Hudson PTW, Turner A (1979) The control of movement in preferred and non preferred hands. Q J Exp Psychol 31:641–652

    Article  PubMed  CAS  Google Scholar 

  8. Volkman J, Schnitzler A, Witte OW, Freund H-J (1998) Handedness and asymmetry of hand representation in human motor cortex. J Neurophysiol 79:2149–2154

    Google Scholar 

  9. Annett M. (1970) A classification of hand preference by association analysis. Br J Psychol 61:303–321

    PubMed  CAS  Google Scholar 

  10. Oldfield RC (1971) The assessment and analysis of handedness: The Edinburgh handedness. Neuropsychologia 9:97–113

    Article  PubMed  CAS  Google Scholar 

  11. Bryden MP (1977) Measuring handedness with questionnaires. Neuropsychologia 15:617–624

    Article  PubMed  CAS  Google Scholar 

  12. Chapman LJ, Chapman JP (1987) The measurement of handedness. Brain Cognition 6:175–183

    Article  CAS  Google Scholar 

  13. McKeever WF, Vandeventer AD (1977) Familial sinistrality and degree of left handedness. Br J Psychol 68:469–471

    PubMed  CAS  Google Scholar 

  14. Gabbard C, Hart S, Kanipe D (1993) Hand preference consistency and motor performance in young children. Cortex, 29:749–753

    PubMed  CAS  Google Scholar 

  15. Annett M, Kilshaw D (1983) Right- and Left-handed skills II: estimating the parameter of distribution of L-R differences in males and females. Br J Psychol 74:269–283

    PubMed  Google Scholar 

  16. Carlier M, Dumont AM, Beau J (1993) Hand performance of French children on a finger-tapping test in relation to handedness, sex, and age. Perceptual Motor Skills 76:931–940

    CAS  Google Scholar 

  17. Tapley SM, Bryden MP (1985) A group test for the assessment of performance between the hands. Neuropsychologia 23:215–221

    Article  PubMed  CAS  Google Scholar 

  18. Todor JI, Kyprie P (1980) Hand differences in the rate and variability of rapid tapping. Journal Motor Behav 12:57–62

    CAS  Google Scholar 

  19. Schueneman Al, Pickleman J, Freeark RJ (1985) Age, gender, lateral dominance and prediction of operative skills among general surgery residents. Surgery 98:506–515

    PubMed  CAS  Google Scholar 

  20. Schueneman AL, Pickelman J, Hesslein R, Freearck RJ (1984) Neuropsychological predictors of operative skills among general surgical residents. Surgery 96:288–295

    PubMed  CAS  Google Scholar 

  21. Spencer FC (1976) Deductive reasoning in the lifelong continuing education of the cardiovascular surgeon. Arch Surg 111:1177–1183

    PubMed  CAS  Google Scholar 

  22. Squire D, Giachino AA, Profitt AW, Heaney C (1989) Objective comparison of manual dexterity in physicians and surgeons. Can J Surg 32:467–470

    PubMed  CAS  Google Scholar 

  23. Carson RG, Chua R, Goodman D, Byblow WD, Elliot D (1995) The preparation of aiming movements. Brain Cognition 28:133–154

    Article  CAS  Google Scholar 

  24. Carson RG, Goodman D, Chua R, Elliott D (1993) Asymmetries in the regulation of visually guided aiming. J Motor Behav 25:21–32

    Article  CAS  Google Scholar 

  25. Macmillan AI, Cuschieri A (1999) Assessment of innate ability and skills for endoscopic manipulations by the advanced Dundee endoscopic psychomotor tester: predictive and concurrent validity. Am J Surg 177:274–277

    Article  PubMed  CAS  Google Scholar 

  26. Amunts K, Schleicher A, Steinmrtz H, Dabringhaus A, Roland PE, Zilles K (1996) Asymmetry in human motor cortex and Handedness. Neuroimage 4:216–222

    Article  PubMed  CAS  Google Scholar 

  27. Kertesz A, Polk M, Black SE, Howell J (1990) Sex, handedness, and the morphometry of cerebral asymmetries on magnetic resonance imaging. Brain Res 530:40–48

    Article  Google Scholar 

  28. Kilshaw D, Annett M (1983) Right and left hand skill 1. Effects of age, sex and hand preference showing superior skill in left-handers. Br J Psychol 74:253–268

    PubMed  Google Scholar 

  29. Hanna GB, Drew T, Clinch P, Shimi S, Dunkley P, Hau C, Cuschieri A (1997) Psychomotor skills for endoscopic manipulation: Differing abilities between right and left-handed individuals. Ann Surg 225(3):333–338

    Article  PubMed  CAS  Google Scholar 

  30. Cuschieri A, Francis N, Crosby J, Hanna GB (2001) What do the master surgeons think of surgical competence and revalidation. Am J Surg 182:110–116

    Article  PubMed  CAS  Google Scholar 

  31. Cuschieri A (2003) Lest we forget the surgeon. Sem Lap Surg 10:141–148

    Google Scholar 

  32. Hyltander A, Liljegren E, Rhodin PH, Lonroth H (2002) The transfer of basic skills learned in a laparoscopic simulator to the operating room. Surg Endosc 16:1324–1328

    Article  PubMed  CAS  Google Scholar 

  33. Andreatta PB, Woodrum DT, Birkmeyer JD, Yellamchilli RK, Doherty GM, Gauger PG, Minter RM (2006) Laparoscopic skills are improved with LapMentor training: results of a randomised, double-blind study. Ann Surg 243:854–860

    Article  PubMed  Google Scholar 

  34. EAES Work Group for Evaluation, Implementation of Simulators and Skills. Consensus guidelines for validation of virtual reality simulators update December 2006,http://www.eaes-eur.org/site/c_index.php?control=compubl&id=26&comid=7&task=view Accessed 7/3/07

  35. Cosman PH, Cregan PC, Marten CJ, Cartmill JA (2002) Virtual reality simulators: Current status in acquisition and assessment of surgical skills. ANZ J Surg 72:30–34

    Article  PubMed  Google Scholar 

  36. Bryden MP, Sprott DA (1981) Statistical determination of degree of laterality. Neuropsychologia 19:571–581

    Article  PubMed  CAS  Google Scholar 

  37. Grantcharov TP, Bardram L, Funch-Jensen P, Rosenberg J (2003) Impact of hand dominance, gender, and experience with computer games on performance in virtual reality laparoscopy. Surg Endosc 17:1082–1085

    Article  PubMed  CAS  Google Scholar 

  38. Gabbard C, Iteya M, Rabb C (1997) A lateralized comparison of handedness and object proximity. Can J Exp Psychol 51(2):176–180

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Cuschieri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elneel, F.H.F., Carter, F., Tang, B. et al. Extent of innate dexterity and ambidexterity across handedness and gender: Implications for training in laparoscopic surgery. Surg Endosc 22, 31–37 (2008). https://doi.org/10.1007/s00464-007-9533-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00464-007-9533-0

Keywords

Navigation