Skip to main content

Advertisement

Log in

Histomorphological and functional changes of the peritoneal membrane during long-term peritoneal dialysis

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

In long-term peritoneal dialysis (PD) morphological and functional changes of the peritoneal membrane are common. Sub-mesothelial fibrosis, angiogenesis and vasculopathy are typical histomorphological alterations of the peritoneal membrane, which, to a certain degree, are induced by uremia and recurrent peritonitis. The most important causative factor, however, represents the chronic exposure to PD solutions. Glucose, glucose degradation products and advanced glycation end-products (AGEs) via different pathways induce inflammation, fibrosis and angiogenesis. As a functional consequence ultrafiltration failure due to peritoneal hyperpermeability and an increased effective peritoneal surface area represents a major clinical problem. An insufficient function of the water-selective aquaporin 1 (AQP-1) channel may also be causative for inadequate ultrafiltration. A rare but life-threatening complication of long-term PD is encapsulating peritoneal sclerosis (EPS). For both impaired AQP-1 function and EPS, the long-term effects of PD fluids are believed to be responsible, even though the mechanisms are not yet understood. The avoidance of glucose and modern PD fluids with fewer glucose degradation products, as well as first pharmacological attempts may help to preserve the peritoneal membrane in the long term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rippe B, Stelin G, Haraldsson B (1991) Computer simulations of peritoneal fluid transport in CAPD. Kidney Int 40:315–325

    Article  CAS  PubMed  Google Scholar 

  2. Schoenicke G, Diamant R, Donner A, Roehrborn A, Grabensee B, Plum J (2004) Histochemical distribution and expression of aquaporin 1 in the peritoneum of patients undergoing peritoneal dialysis: relation to peritoneal transport. Am J Kidney Dis 44:146–154

    Article  CAS  PubMed  Google Scholar 

  3. Bouts AH, Davin JC, Groothoff JW, Van Amstel SP, Zweers MM, Krediet RT (2000) Standard peritoneal permeability analysis in children. J Am Soc Nephrol 11:943–950

    Article  CAS  PubMed  Google Scholar 

  4. Rusthoven E, Krediet RT, Willems HL, Monnens LA, Schroder CH (2005) Sodium sieving in children. Perit Dial Int 25 [Suppl 3]:S141–S142

    Article  CAS  PubMed  Google Scholar 

  5. Smit W (2006) Estimates of peritoneal membrane function—new insights. Nephrol Dial Transplant 21 [Suppl 2]:S16–S19

    Article  CAS  Google Scholar 

  6. Mortier S, De Vriese AS, Lameire N (2003) Recent concepts in the molecular biology of the peritoneal membrane—implications for more biocompatible dialysis solutions. Blood Purif 21:14–23

    Article  CAS  PubMed  Google Scholar 

  7. Williams JD, Craig KJ, Topley N, Von Ruhland C, Fallon M, Newman GR, Mackenzie RK, Williams GT; Peritoneal Biopsy Study Group (2002) Morphologic changes in the peritoneal membrane of patients with renal disease. J Am Soc Nephrol 13:470–479

    Article  PubMed  Google Scholar 

  8. Plum J, Hermann S, Fussholler A, Schoenicke G, Donner A, Rohrborn A, Grabensee B (2001) Peritoneal sclerosis in peritoneal dialysis patients related to dialysis settings and peritoneal transport properties. Kidney Int 78:S42–S47

    Article  CAS  Google Scholar 

  9. Combet S, Ferrier ML, Van Landschoot M, Stoenoiu M, Moulin P, Miyata T, Lameire N, Devuyst O (2001) Chronic uremia induces permeability changes, increased nitric oxide synthase expression, and structural modifications in the peritoneum. J Am Soc Nephrol 12:2146–2157

    Article  CAS  PubMed  Google Scholar 

  10. Topley N, Liberek T, Davenport A, Li FK, Fear H, Williams JD (1996) Activation of inflammation and leukocyte recruitment into the peritoneal cavity. Kidney Int 56:S17–S21

    CAS  Google Scholar 

  11. Albrektsen GE, Wideroe TE, Nilsen TI, Romundstad P, Radtke M, Hallan S, Aasarod K, Oien C, Laegreid IK (2004) Transperitoneal water transport before, during, and after episodes with infectious peritonitis in patients treated with CAPD. Am J Kidney Dis 43:485–491

    Article  PubMed  Google Scholar 

  12. Johnson DW, Agar J, Collins J, Disney A, Harris DC, Ibels L, Irish A, Saltissi D, Suranyi M (2003) Recommendations for the use of icodextrin in peritoneal dialysis patients. Nephrology 8:1–7

    Article  CAS  PubMed  Google Scholar 

  13. Davies SJ, Phillips L, Griffiths AM, Russell LH, Naish PF, Russell GI (1999) Impact of peritoneal membrane function on long-term clinical outcome in peritoneal dialysis patients. Perit Dial Int 19 [Suppl 2]:S91–S94

    Article  PubMed  Google Scholar 

  14. Goffin E, Devuyst O (2006) Phenotype and genotype: perspectives for peritoneal dialysis patients. Nephrol Dial Transplant 21:3018–3022

    Article  PubMed  Google Scholar 

  15. Dobbie JW, Zaki M, Wilson L (1981) Ultrastructural studies on the peritoneum with special reference to chronic ambulatory peritoneal dialysis. Scott Med J 26:213–223

    Article  CAS  PubMed  Google Scholar 

  16. Smit W, Schouten N, van den Berg N, Langedijk MJ, Struijk DG, Krediet RT; The Netherlands Ultrafiltration Failure Study Group (2004) Analysis of the prevalence and causes of ultrafiltration failure during long-term peritoneal dialysis: a cross-sectional study. Perit Dial Int 24:562–570

    Article  PubMed  Google Scholar 

  17. Fussholler A, zur Nieden S, Grabensee B, Plum J (2002) Peritoneal fluid and solute transport: influence of treatment time, peritoneal dialysis modality, and peritonitis incidence. J Am Soc Nephrol 13:1055–1060

    Article  PubMed  Google Scholar 

  18. Davies SJ (2004) Longitudinal relationship between solute transport and ultrafiltration capacity in peritoneal dialysis patients. Kidney Int 66:2437–2445

    Article  CAS  PubMed  Google Scholar 

  19. Dombros N, Dratwa M, Feriani M, Gokal R, Heimburger O, Krediet R, Plum J, Rodrigues A, Selgas R, Struijk D, Verger C; EBPG Expert Group on Peritoneal Dialysis (2005) European best practice guidelines for peritoneal dialysis. 7. Adequacy of peritoneal dialysis. Nephrol Dial Transplant 20 [Suppl 9]:S24–S27

    Google Scholar 

  20. Brimble KS, Walker M, Margetts PJ, Kundhal KK, Rabbat CG (2006) Meta-analysis: peritoneal membrane transport, mortality, and technique failure in peritoneal dialysis. J Am Soc Nephrol 17:2591–2598

    Article  PubMed  Google Scholar 

  21. Rumpsfeld M, McDonald SP, Johnson DW (2006) Higher peritoneal transport status is associated with higher mortality and technique failure in the Australian and New Zealand peritoneal dialysis patient populations. J Am Soc Nephrol 17:271–278

    Article  PubMed  Google Scholar 

  22. Sitter T, Sauter M (2005) Impact of glucose in peritoneal dialysis: saint or sinner? Perit Dial Int 25:415–425

    Article  CAS  PubMed  Google Scholar 

  23. Noh H, Kim JS, Han KH, Lee GT, Song JS, Chung SH, Jeon JS, Ha H, Lee HB (2006) Oxidative stress during peritoneal dialysis: implications in functional and structural changes in the membrane. Kidney Int 69:2022–2028

    Article  CAS  PubMed  Google Scholar 

  24. Selgas R, Bajo A, Jimenez-Heffernan JA, Sanchez-Tomero JA, Del Peso G, Aguilera A, Lopez-Cabrera M (2006) Epithelial-to-mesenchymal transition of the mesothelial cell—its role in the response of the peritoneum to dialysis. Nephrol Dial Transplant 21 [Suppl 2]:S2–S7

    Article  CAS  Google Scholar 

  25. Margetts PJ, Gyorffy S, Kolb M, Yu L, Hoff CM, Holmes CJ, Gauldie J (2002) Antiangiogenic and antifibrotic gene therapy in a chronic infusion model of peritoneal dialysis in rats. J Am Soc Nephrol 13:721–728

    Article  CAS  PubMed  Google Scholar 

  26. Szeto CC, Wong TY, Lai KB, Chow KM, Li PK (2002) The role of vascular endothelial growth factor in peritoneal hyperpermeability during CAPD-related peritonitis. Perit Dial Int 22:265–267

    Article  CAS  PubMed  Google Scholar 

  27. Combet S, Miyata T, Moulin P, Pouthier D, Goffin E, Devuyst O (2000) Vascular proliferation and enhanced expression of endothelial nitric oxide synthase in human peritoneum exposed to long-term peritoneal dialysis. J Am Soc Nephrol 11:717–728

    Article  CAS  PubMed  Google Scholar 

  28. Davies SJ, Brown EA, Frandsen NE, Rodrigues AS, Rodriguez-Carmona A, Vychytil A, Macnamara E, Ekstrand A, Tranaeus A, Filho JC; EAPOS Group (2005) Longitudinal membrane function in functionally anuric patients treated with APD: data from EAPOS on the effects of glucose and icodextrin prescription. Kidney Int 67:1609–1615

    Article  CAS  PubMed  Google Scholar 

  29. Haas S, Schmitt CP, Arbeiter K, Bonzel KE, Fischbach M, John U, Pieper AK, Schaub TP, Passlick-Deetjen J, Mehls O, Schaefer F (2003) Improved acidosis correction and recovery of mesothelial cell mass with neutral-pH bicarbonate dialysis solution among children undergoing automated peritoneal dialysis. J Am Soc Nephrol 14:2632–2638

    Article  PubMed  Google Scholar 

  30. Fusshoeller A, Plail M, Grabensee B, Plum J (2004) Biocompatibility pattern of a bicarbonate/lactate-buffered peritoneal dialysis fluid in APD: a prospective, randomized study. Nephrol Dial Transplant 19(8):2101–2106

    Article  CAS  PubMed  Google Scholar 

  31. Lee HY, Choi HY, Park HC, Seo BJ, Do JY, Yun SR, Song HY, Kim YH, Kim YL, Kim DJ, Kim YS, Kim MJ, Shin SK (2006) Changing prescribing practice in CAPD patients in Korea: increased utilization of low GDP solutions improves patient outcome. Nephrol Dial Transplant 21:2893–2899

    Article  CAS  PubMed  Google Scholar 

  32. Parikova A, Smit W, Struijk DG, Krediet RT (2006) Analysis of fluid transport pathways and their determinants in peritoneal dialysis patients with ultrafiltration failure. Kidney Int 70:1988–1994

    Article  CAS  PubMed  Google Scholar 

  33. Goffin E, Combet S, Jamar F, Cosyns JP, Devuyst O (1999) Expression of aquaporin-1 in a long-term peritoneal dialysis patient with impaired transcellular water transport. Am J Kidney Dis 33:383–388

    Article  CAS  PubMed  Google Scholar 

  34. Fusshoeller A, Tiemann B, Grabensee B (2006) Aquaporin 1 in the peritoneal dialysis effluent—correlation with peritoneal transport and clinical data (abstract presentation at the 37th Congress of the German Society for Nephrology)

  35. Combet S, Van Landschoot M, Moulin P, Piech A, Verbavatz JM, Goffin E, Balligand JL, Lameire N, Devuyst O (1999) Regulation of aquaporin-1 and nitric oxide synthase isoforms in a rat model of acute peritonitis. J Am Soc Nephrol 10:2185–2196

    Article  CAS  PubMed  Google Scholar 

  36. Smit W, van den Berg N, Schouten N, Aikens E, Struijk DG, Krediet RT (2004) Free-water transport in fast transport status: a comparison between CAPD peritonitis and long-term PD. Kidney Int 65:298–303

    Article  PubMed  Google Scholar 

  37. Kawaguchi Y, Saito A, Kawanishi H, Nakayama M, Miyazaki M, Nakamoto H, Tranaeus A (2005) Recommendations on the management of encapsulating peritoneal sclerosis in Japan, 2005: diagnosis, predictive markers, treatment, and preventive measures. Perit Dial Int 25 [Suppl 4]:S83–S95

    Article  PubMed  Google Scholar 

  38. Hirahara I, Kusano E, Yanagiba S, Miyata Y, Ando Y, Muto S, Asano Y (2006) Peritoneal injury by methylglyoxal in peritoneal dialysis. Perit Dial Int 26:380–392

    Article  CAS  PubMed  Google Scholar 

  39. Numata M, Nakayama M, Hosoya T, Hoff CM, Holmes CJ, Schalling M, Nordfors L, Lindholm B (2004) Possible pathologic involvement of receptor for advanced glycation end products (RAGE) for development of encapsulating peritoneal sclerosis in Japanese CAPD patients. Clin Nephrol 62:455–460

    Article  CAS  PubMed  Google Scholar 

  40. Flessner MF (2006) Peritoneal ultrafiltration: mechanisms and measures. Contrib Nephrol 150:28–36

    Article  PubMed  Google Scholar 

  41. Michels WM, Zweers MM, Smit W, Korevaar J, Struijk DG, van Westrhenen R, Krediet RT (2004) Does lymphatic absorption change with the duration of peritoneal dialysis? Perit Dial Int 24:347–352

    Article  PubMed  Google Scholar 

  42. Mortier S, Faict D, Lameire NH, De Vriese AS (2005) Benefits of switching from a conventional to a low-GDP bicarbonate/lactate-buffered dialysis solution in a rat model. Kidney Int 67:1559–1565

    Article  CAS  PubMed  Google Scholar 

  43. Gaggiotti E, Arduini A, Bonomini M, Valentini G, Sacchi G, Sansoni E, Salvo D, Di Paolo N (2005) Prevention of peritoneal sclerosis: a new proposal to substitute glucose with carnitine dialysis solution (biocompatibility testing in vitro and in rabbits). Int J Artif Organs 28:177–187

    Article  CAS  PubMed  Google Scholar 

  44. Kolesnyk I, Dekker F, Struijk D, Krediet R (2006) The impact of ACE inhibitors and A II receptor blockers on the peritoneal membrane function in long-term PD patients. Perit Dial Int 26 [Suppl 2]:S7 (abstract)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Fusshoeller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fusshoeller, A. Histomorphological and functional changes of the peritoneal membrane during long-term peritoneal dialysis. Pediatr Nephrol 23, 19–25 (2008). https://doi.org/10.1007/s00467-007-0541-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-007-0541-z

Keywords

Navigation