Skip to main content
Log in

Climatic influences on intra-annual stem radial increment of Pinus sylvestris (L.) exposed to drought

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Within a dry inner Alpine valley in the Eastern Central Alps (750 m a.s.l., Tyrol, Austria), the influence of climate variables (precipitation, air humidity, temperature) and soil water content on intra-annual dynamics of tree-ring development was determined in Scots pine (Pinus sylvestris L.) at two sites differing in soil water availability (xeric and dry-mesic site). Radial stem development was continuously followed during 2007 and 2008 by band dendrometers and repeated micro-sampling of the developing tree rings of mature trees. Daily and seasonal fluctuations of the stem radius, which reached almost half of total annual increment, primarily reflected changes in tree water status and masked radial stem growth especially during drought periods in spring. However, temporal dynamics of intra-annual radial growth determined by both methods were found to be quite similar, when onset of radial growth in dendrometer traces was defined by the occurrence of first enlarging xylem cells. Radial increments during the growing period, which lasted from early April through early August, showed statistically significant relationships with precipitation (Kendall τ = 0.234, p < 0.01, and τ = 0.184, p < 0.05, at the xeric and dry-mesic site, respectively) and relative air humidity (Pearson r = 0.290, p < 0.05, and r = 0.306, p < 0.05 at the xeric and dry-mesic site, respectively). Soil water content and air temperature had no influence on radial stem increment. Culmination of radial stem growth was detected at both study plots around mid-May, prior to occurrence of more favourable climatic conditions, i.e., an increase in precipitation during summer. We suggest that the early decrease in radial growth rate is due to a high belowground demand for carbohydrates to ensure adequate resource acquisition on the drought-prone substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Antonova GF, Stasava VV (1993) Effects of environmental factors on wood formation in Scots pine stems. Trees 7:214–219

    Article  Google Scholar 

  • Bäucker E, Bues C, Vogel M (1998) Radial growth dynamics of spruce (Picea abies) measured by micro-cores. IAWA J 3:301–309

    Google Scholar 

  • Bigler C, Bräker OU, Bugmann H, Dobbertin M, Rigling A (2006) Drought as an inciting mortality factor in Scots pine stands of the Valais, Switzerland. Ecosystems 9:330–343

    Article  Google Scholar 

  • Blasing TJ, Solomon AM, Duvick DN (1984) Response functions revisited. Tree-Ring Bull 44:1–15

    Google Scholar 

  • Boucher JF, Munson AD, Bernier PY (1995) Foliar absorption of dew influences shoot water potential and root-growth in Pinus strobus seedlings. Tree Physiol 15:819–823

    Google Scholar 

  • Bouriaud O, Leban J-M, Bert D, Deleuze C (2005) Intra-annual variations in climate influence growth and wood density of Norway spruce. Tree Physiol 25:651–660

    CAS  PubMed  Google Scholar 

  • Breshears DD, McDowell NG, Goddard KL, Dayem KE, Martens SN, Meyer CW, Brown KM (2008) Foliar absorption of intercepted rainfall improves woody plant water status most during drought. Ecology 89(1):41–47

    Article  PubMed  Google Scholar 

  • Brunner I, Pannatier EG, Frey B, Rigling A, Landolt W, Zimmermann S, Dobbertin M (2009) Morphological and physiological responses of Scots pine fine roots to water supply in a dry climatic region in Switzerland. Tree Physiol 29:541–550

    Article  CAS  PubMed  Google Scholar 

  • Burgess SSO, Dawson TE (2004) The contribution of fog to the water relations of Sequoia sempervirens (D. Don): foliar uptake and prevention of dehydration. Plant Cell Environ 27:1023–1034

    Article  Google Scholar 

  • Camarero JJ, Guerrero-Campo J, Gutiérrez E (1998) Tree-ring growth and structure of Pinus uncinata and Pinus sylvestris in the Central Spanish Pyrenees. Arct Alp Res 30(1):1–10

    Article  Google Scholar 

  • Carrer M, Anfodillo T, Urbinati C, Carraro V (1998) High-altitude forest sensitivity to global warming: results from long-term and short-term analyses in the Eastern Italian Alps. In: Beninston M, Innes JL (eds) The impacts of climate variability on forests. Springer, Berlin, pp 171–189

    Chapter  Google Scholar 

  • Cook ER, Kairiukstis LA (1990) Methods of dendrochronology. Applications in the environmental sciences. Kluwer, Dordrecht

    Google Scholar 

  • Creber GT, Chaloner WO (1984) Influence of environmental factors on the wood structure of living and fossil trees. Bot Rev 50:357–448

    Article  Google Scholar 

  • Daudet FA, Ameglio T, Cochard H, Archilla O, Lacointe A (2005) Experimental analysis of the role of water and carbon in tree stem diameter variations. J Exp Bot 56:135–144

    CAS  PubMed  Google Scholar 

  • Deslauriers A, Morin H (2005) Intra-annual tracheid production in balsam fir stems and the effect of meteorological variables. Trees 19:402–408

    Article  Google Scholar 

  • Deslauriers A, Morin H, Begin Y (2003a) Cellular phenology of annual ring formation of Abies balsamea in the Quebec boreal forest (Canada). Can J For Res 33:190–200

    Article  Google Scholar 

  • Deslauriers A, Morin H, Urbinati C, Carrer M (2003b) Daily weather response of balsam fir (Abies balsamea (L.) Mill.) stem radius increment from dendrometer analysis in the boreal forests of Québec (Canada). Trees 17:477–484

    Google Scholar 

  • Deslauriers A, Rossi S, Anfodillo T (2007) Dendrometer and intra-annual tree growth: what kind of information can be inferred? Dendrochronologia 25:113–124

    Article  Google Scholar 

  • Deslauriers A, Rossi S, Anfodillo T, Saracino A (2008) Cambial phenology, wood formation and temperature thresholds in two contrasting years at high altitude in southern Italy. Tree Physiol 28:863–871

    PubMed  Google Scholar 

  • Dobbs RC, Scott DRM (1971) Distribution of diurnal fluctuations in stem circumference of Douglas-fir. Can J For Res 1:80–83

    Article  Google Scholar 

  • Downes G, Beadle C, Worledge D (1999) Daily stem growth patterns in irrigated Eucalyptus globulus and E. nitens in relation to climate. Trees 14:102–111

    Google Scholar 

  • Eilmann B, Zweifel R, Buchmann N, Fonti P, Rigling A (2009) Drought-induced adaptation of the xylem in Scots pine and pubescent oak. Tree Physiol 29:1011–1020

    Article  PubMed  Google Scholar 

  • Ellenberg H (1988) Vegetation ecology of Central Europe. Cambridge University Press, Cambridge

    Google Scholar 

  • FAO (1998) World reference base for soil resources. FAO, Rome

    Google Scholar 

  • Fritts HC (1961) An evaluation of three techniques for measuring radial tree growth. Bull Ecol Soc Am 42:54–55

    Google Scholar 

  • Fritts HC (1976) Tree rings and climate. Academic Press, London

    Google Scholar 

  • Gartner BL, Aloni R, Funada R, Lichtfuss-Gautier AN, Roig FA (2002) Clues for dendrochronology from studies of wood structure and function. Dendrochronologia 20(1–2):53–61

    Article  Google Scholar 

  • Gričar J, Zupančič M, Čufar K, Primož O (2006) Regular cambial activity and xylem and phloem formation in locally heated and cooled stem portions of Norway spruce. Wood Sci Technol 41(6):463–475

    Google Scholar 

  • Gruber A, Zimmermann J, Wieser G, Oberhuber W (2009) Effects of climate variables on intra-annual stem radial increment in Pinus cembra (L.) along the alpine treeline ecotone. Ann For Sci 66:503. doi:10.1051/forest/2009038

    Article  Google Scholar 

  • Gruber A, Strobl S, Veit B, Oberhuber W (2010) Impact of drought on the temporal dynamics of wood formation in Pinus sylvestris. Tree Physiol. doi:10.1093/treephys/tpq003

  • Herzog KM, Häsler R, Thum R (1995) Diurnal changes in the radius of a subalpine Norway spruce stem: their relation to the sap flow and their use to estimate transpiration. Trees 10:94–101

    Article  Google Scholar 

  • Hinckley TM, Lassoie JP (1981) Radial growth in conifers and deciduous trees: a comparison. Mitt Forstl Bundesvers Wien 142:17–56

    Google Scholar 

  • Hsiao TC, Acevedo E (1974) Plant responses to water deficits, water-use efficiency, and drought resistance. Agric Meteorol 14:9–84

    Article  Google Scholar 

  • Hughes MK (2002) Dendrochronology in climatology—the state of the art. Dendrochronologia 20(1–2):95–116

    Article  Google Scholar 

  • Jolly WM, Dobbertin M, Zimmermann NE, Reichstein M (2005) Divergent vegetation growth response to the 2003 heat wave in the Swiss Alps. Geophys Res Lett 32:L18409. doi:10.1029/2005GL023252

    Article  Google Scholar 

  • Katz C, Oren R, Schulze E-D, Milburn JA (1989) Uptake of water and solutes through twigs of Picea abies (L.) Karst. Trees 3:33–37

    Article  Google Scholar 

  • Kienast F, Schweingruber FH, Bräker OU, Schär E (1987) Tree-ring studies on conifers along ecological gradients and the potential of single-year analyses. Can J For Res 17:683–696

    Article  Google Scholar 

  • Kozlowski TT, Winget CH (1964) Diurnal and seasonal variations in radii of tree stems. Ecology 45:149–155

    Article  Google Scholar 

  • Krapfenbauer A (1969) Böden auf Dolomit und Serpentin in ihrer Auswirkung auf die Waldernährung. Cbl Ges Forstw 86:89–219

    Google Scholar 

  • Levanič T, Gričar J, Gagen M, Jalkanen R, Loader NJ, McCarroll D, Oven P, Robertson I (2009) The climatic sensitivity of Norway spruce [Picea abies (L.) Karst.] in the southeastern European Alps. Trees 23:169–180

    Article  Google Scholar 

  • Li M-H, Xiao W-F, Wang S-G, Cheng G-W, Cherubini P, Cai X-H, Liu X-L, Wang X-D, Zhu W-D (2008) Mobile carbohydrates in Himalayan treeline trees. I. Evidence for carbon gain limitation but not for growth limitation. Tree Physiol 28:1287–1296

    CAS  PubMed  Google Scholar 

  • Limm EB, Simonin KA, Bothman AG, Dawson TE (2009) Foliar water uptake: a common water acquisition strategy for plants of the redwood forest. Oecologia 161:449–459

    Article  PubMed  Google Scholar 

  • Loris K (1981) Dickenwachstum von Zirbe, Fichte und Lärche an der alpinen Waldgrenze/Patscherkofel. Mitt Forstl Bundesvers Wien 142:417–441

    Google Scholar 

  • Mäkinen H, Nöjd P, Saranpää P (2003) Seasonal changes in stem radius and production of new tracheids in Norway spruce. Tree Physiol 23:959–968

    PubMed  Google Scholar 

  • Mäkinen H, Seo J-W, Nöjd P, Schmitt U, Jalkanen R (2008) Seasonal dynamics of wood formation: a comparison between pinning, microcoring and dendrometer measurements. Eur J For Res 127:235–245

    Google Scholar 

  • Martín-Benito D, Cherubini P, Río M, Canellas I (2008) Growth response to climate and drought in Pinus nigra Arn. trees of different crown classes. Trees 22:363–373

    Article  Google Scholar 

  • Nehls U, Grunze N, Willmann M, Reich M, Küster H (2007) Sugar for my honey: carbohydrate partitioning in ectomycorrhizal symbiosis. Phytochemistry 68:82–91

    Article  CAS  PubMed  Google Scholar 

  • Oberhuber W (2001) The role of climate in the mortality of Scots pine (Pinus sylvestris L.) exposed to soil dryness. Dendrochronologia 19(1):45–55

    Google Scholar 

  • Oberhuber W, Kofler W (2000) Topographic influences on radial growth of Scots pine (Pinus sylvestris L.) at small spatial scales. Plant Ecol 146:229–238

    Article  Google Scholar 

  • Oberhuber W, Stumböck M, Kofler W (1998) Climate-tree-growth relationships of Scots pine stands (Pinus sylvestris L.) exposed to soil dryness. Trees 13:19–27

    Google Scholar 

  • Oribe Y, Funada R, Shibagaki M, Kubo T (2001) Cambial reactivation in locally heated stems of evergreen conifer Abies sachalinensis (Schmidt) Masters. Planta 212:684–691

    Article  CAS  PubMed  Google Scholar 

  • Orwig DA, Abrams MD (1997) Variation in radial growth responses to drought among species, site, and canopy strata. Trees 11:474–484

    Article  Google Scholar 

  • Parlange JY, Turner NC, Waggoner PE (1975) Water uptake, diameter change, and nonlinear diffusion in tree stems. Plant Physiol 55:247–250

    Article  CAS  PubMed  Google Scholar 

  • Pichler P, Oberhuber W (2007) Radial growth response of coniferous forest trees in an inner Alpine environment to heat-wave in 2003. For Ecol Manag 242:688–699

    Article  Google Scholar 

  • Plomion C, Leprovost G, Stokes A (2001) Wood formation in trees. Plant Physiol 127:1513–1523

    Article  CAS  PubMed  Google Scholar 

  • Rebetez M, Dobbertin M (2004) Climate change may already threaten Scots pine stands in the Swiss Alps. Theor Appl Clim 79:1–9

    Article  Google Scholar 

  • Rigling A, Bräker OU, Schneiter G, Schweingruber FH (2002) Intra-annual tree-ring parameters indicating differences in drought stress of Pinus sylvestris forests within the Erico-Pinion in the Valais (Switzerland). Plant Ecol 163:105–121

    Article  Google Scholar 

  • Rigling A, Brühlhart H, Bräker OU, Forster T, Schweingruber FH (2003) Effects of irrigation on diameter growth and vertical resin duct production in Pinus sylvestris L. on dry sites in the central Alps, Switzerland. For Ecol Manag 175:285–296

    Article  Google Scholar 

  • Rossi S, Deslauriers A, Morin H (2003) Application of the Gompertz equation for the study of xylem cell development. Dendrochronologia 21:33–39

    Article  Google Scholar 

  • Rossi S, Anfodillo T, Menardi R (2006a) Trephor: a new tool for sampling microcores from tree stems. IAWA J 27:89–97

    Google Scholar 

  • Rossi S, Deslauriers A, Anfodillo T (2006b) Assessment of cambial activity and xylogenesis by microsampling tree species: an example at the Alpine timberline. IAWA J 27:383–394

    Google Scholar 

  • Rossi S, Deslauriers A, Anfodillo T, Morin H, Saracino A, Motta R, Borghetti M (2006c) Conifers in cold environments synchronize maximum growth rate of tree-ring formation with day length. New Phytol 170(2):301–310

    Article  PubMed  Google Scholar 

  • Rossi S, Deslauriers A, Anfodillo T, Carraro V (2007) Evidence of threshold temperatures for xylogenesis in conifers at high altitudes. Oecologia 152(1):1–12

    Article  PubMed  Google Scholar 

  • Sheskin D (2007) Handbook of parametric and nonparametric statistical procedures, 4th edn. Chapman & Hall/CRC, Boca Raton, FL

    Google Scholar 

  • Steppe K, De Pauw DJW, Lemeur R, Vanrolleghem PA (2006) A mathematical model linking tree sap flow dynamics to daily stem diameter fluctuations and radial stem growth. Tree Physiol 26:257–273

    Article  PubMed  Google Scholar 

  • Tardif J, Flannigan M, Bergeron Y (2001) An analysis of the daily radial activity of 7 boreal tree species, North-western Québec. Environ Monit Assess 67:141–160

    Article  CAS  PubMed  Google Scholar 

  • Thabeet A, Vennetier M, Gadbin-Henry C, Denelle N, Roux M, Caraglio Y, Vila B (2009) Response of Pinus sylvestris L. to recent climatic events in the French Mediterranean region. Trees 23:843–853

    Article  Google Scholar 

  • Thibeault-Martel M, Krause C, Morin H, Rossi S (2008) Cambial activity and intra-annual xylem formation in roots and stems of Abies balsamea and Picea mariana. Ann Bot 102(5):667–674

    Article  PubMed  Google Scholar 

  • Vaganov EA, Hughes MK, Shashkin AV (2006) Growth dynamics of conifer tree rings. Images of past and future environments: ecological studies, vol 183. Springer, Berlin

  • Waldboth M, Oberhuber W (2009) Synergistic effect of drought and chestnut blight (Cryphonectria parasitica) on growth decline of European chestnut (Castanea sativa). For Pathol 39:43–55

    Google Scholar 

  • Zeide B (1993) Analysis of growth equations. For Sci 39:594–616

    Google Scholar 

  • Zweifel R, Häsler R (2001) Dynamics of water storage in mature subalpine Picea abies: temporal and spatial patterns of change in stem radius. Tree Physiol 21:561–569

    CAS  PubMed  Google Scholar 

  • Zweifel R, Item H, Häsler R (2000) Stem radius changes and their relation to stored water in stems of young Norway spruce trees. Trees 15:50–57

    Article  Google Scholar 

  • Zweifel R, Zimmermann L, Zeugin F, Newberry DM (2006) Intra-annual radial growth and water relations of trees: implications towards a growth mechanism. J Exp Bot 57(6):1445–1459

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Austrian Science Fund (FWF Project No. P19563-B16 “Dynamics of cambial activity and wood formation of Scots pine (Pinus sylvestris L.) exposed to soil dryness”. Special thanks are to I. Swidrak for technical support in histological analysis of wood formation. We also thank the communicating editor and anonymous reviewers for their valuable suggestions and comments to improve the manuscript. Climate data were provided by Hydrographischer Dienst, Innsbruck, which is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Oberhuber.

Additional information

Communicated by S. Leavitt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oberhuber, W., Gruber, A. Climatic influences on intra-annual stem radial increment of Pinus sylvestris (L.) exposed to drought. Trees 24, 887–898 (2010). https://doi.org/10.1007/s00468-010-0458-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-010-0458-1

Keywords

Navigation