Skip to main content
Log in

Mechanismen der endogenen Schmerzmodulation am Beispiel der Placeboanalgesie

Befunde aus der funktionellen Bildgebung

Mechanisms of endogenous pain modulation illustrated by placebo analgesia

Functional imaging findings

  • Schwerpunkt
  • Published:
Der Schmerz Aims and scope Submit manuscript

Zusammenfassung

Die zentrale Repräsentation nozizeptiver Information und die damit verbundene Wahrnehmung von Schmerz unterliegen ausgeprägten pro- und antinozizeptiven Modulationen durch kognitive Prozesse. Die Placeboanalgesie ist eines der eindrücklichsten Beispiele der kognitiven Schmerzmodulation und damit das Parade-Paradigma für die Untersuchung der Mechanismen der körpereigenen Schmerzmodulation. Die Zusammenschau verschiedener wichtiger Arbeiten in den vergangenen Jahren bestätigt, dass es sich bei der Placeboanalgesie um eine Form der endogenen, kognitiv vermittelten Schmerzhemmung handelt, die zumindest partiell über die Ausschüttung endogener Opiate vermittelt wird. Mithilfe von modernen funktionell-bildgebenden Techniken konnten die zentralnervösen Korrelate der Placeboanalgesie identifiziert werden. Hierbei scheint zingulofrontalen Hirnarealen wie dem dorsolateralen präfrontalen Kortex und dem rostralen anterioren Zingulum in Kombination mit einem subkortikalen, antinozizeptiven Netzwerk eine Schlüsselrolle zuzukommen. Die verminderte Schmerzempfindung während der Placeboanalgesie geht mit einer verminderten Aktivierung schmerzrelevanter Areale einher. Jüngste Daten der funktionellen Bildgebung des Spinalmarkes weisen darauf hin, dass diese endogen vermittelte Hemmung afferenter nozizeptiver Information bereits auf eine Modulation nozizeptiven Inputs auf Höhe des spinalen Hinterhorns zurückzuführen ist. In diesem Beitrag werden der aktuelle Stand der funktionellen Bildgebung der Mechanismen der kognitiven Schmerzmodulation am Beispiel der Placeboanalgesie dargestellt und Ausblicke für zukünftige Forschungsarbeiten in diesem Gebiet diskutiert.

Abstract

Nociceptive information processing and related pain perception are subject to substantial pro- and antinociceptive modulation. Research on the involved circuitry and the implemented mechanisms is a major focus of contemporary neuroscientific studies in the field of pain and will provide new insights into the prevention and treatment of chronic pain states. Placebo analgesia is a powerful clinical example of the cognitive modulation of pain perception. In placebo analgesia the administration of an inert substance will produce an analgesic effect if the subject is convinced that the substance is a potent analgesic. Recent neuroimaging studies have started to characterize the neural circuitry supporting the placebo analgesic effect. The converging evidence from these studies supports the concept that during placebo analgesia cingulo-frontal regions interact with subcortical structures involved in endogenous antinociception to produce the placebo-induced reduction in pain perception. The subject’s report of reduced pain during placebo analgesia coincides with decreased activity in the classic pain areas. This indicates that the altered pain experience during placebo analgesia results from active inhibition of nociceptive input. This cognitively triggered endogenous modulation of pain involves, at least in part, the endogenous opioid system. Most recently, functional magnetic resonance imaging data of the human spinal cord revealed that these mechanisms involve the inhibition of nociceptive processing at the level of the dorsal horn of the spinal cord. Here we discuss recent advances in pain imaging research focusing on cognitively triggered endogenous pain control mechanisms and respective implications for future research strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Millan MJ (2002) Descending control of pain. Prog Neurobiol 66(6):355–474

    Article  CAS  PubMed  Google Scholar 

  2. Fields HL (2000) Pain modulation: expectation, opioid analgesia and virtual pain. Prog Brain Res 122:245–253

    Article  CAS  PubMed  Google Scholar 

  3. Vase L, Riley JL, Price DD (2002) A comparison of placebo effects in clinical analgesic trials versus studies of placebo analgesia. Pain 99(3):443–452

    Article  PubMed  Google Scholar 

  4. Hrobjartsson A, Gotzsche PC (2001) Is the placebo powerless? An analysis of clinical trials comparing placebo with no treatment. N Engl J Med 344(21):1594–1602

    Article  CAS  PubMed  Google Scholar 

  5. Vase L et al (2009) Factors contributing to large analgesic effects in placebo mechanism studies conducted between 2002 and 2007. Pain 145(1–2):36–44

    Google Scholar 

  6. Pollo A et al (2001) Response expectancies in placebo analgesia and their clinical relevance. Pain 93(1):77–84

    Article  CAS  PubMed  Google Scholar 

  7. Amanzio M, Benedetti F (1999) Neuropharmacological dissection of placebo analgesia: expectation-activated opioid systems versus conditioning-activated specific subsystems. J Neurosci 19(1):484–494

    CAS  PubMed  Google Scholar 

  8. Benedetti F, Arduino C, Amanzio M (1999) Somatotopic activation of opioid systems by target-directed expectations of analgesia. J Neurosci 19(9):3639–3648

    CAS  PubMed  Google Scholar 

  9. Montgomery GH, Kirsch I (1997) Classical conditioning and the placebo effect. Pain 72(1–2):107–113

    Google Scholar 

  10. Kirsch I (1990) Changing expectations: a key to effective psychotherapy. Brooks/Cole, Pacific Grove, CA, p 231

  11. Voudouris NJ, Peck CL, Coleman G (1990) The role of conditioning and verbal expectancy in the placebo response. Pain 43(1):121–128

    Article  CAS  PubMed  Google Scholar 

  12. Voudouris NJ, Peck CL, Coleman G (1985) Conditioned placebo responses. J Pers Soc Psychol 48(1):47–53

    Article  CAS  PubMed  Google Scholar 

  13. Siegel S (2002) Explanatory mechanisms for placebo effects: pavlovian conditioning. In: KA, Guess HA, Kusek JW, Engel LW (eds) The science of the placebo: toward an interdisciiplinary research agenda. BMJ Books, London, pp 133–157

  14. Wickramasekera I (1980) A conditioned response model of the placebo effect predictions from the model. Biofeedback Self Regul 5(1):5–18

    Article  CAS  PubMed  Google Scholar 

  15. Levine JD, Gordon NC, Fields HL (1978) The mechanism of placebo analgesia. Lancet 2(8091):654–657

    Article  CAS  PubMed  Google Scholar 

  16. Petrovic P et al (2002) Placebo and opioid analgesia – imaging a shared neuronal network. Science 295(5560):1737–1740

    Article  CAS  PubMed  Google Scholar 

  17. Wager TD et al (2004) Placebo-induced changes in FMRI in the anticipation and experience of pain. Science 303(5661):1162–1167

    Article  CAS  PubMed  Google Scholar 

  18. Kong J et al (2006) Brain activity associated with expectancy-enhanced placebo analgesia as measured by functional magnetic resonance imaging. J Neurosci 26(2):381–388

    Article  CAS  PubMed  Google Scholar 

  19. Bingel U et al (2006) Mechanisms of placebo analgesia: rACC recruitment of a subcortical antinociceptive network. Pain 120(1–2):8–15

    Google Scholar 

  20. Petrovic P et al (2005) Placebo in emotional processing – induced expectations of anxiety relief activate a generalized modulatory network. Neuron 46(6):957–969

    Article  CAS  PubMed  Google Scholar 

  21. Sarinopoulos I et al (2006) Brain mechanisms of expectation associated with insula and amygdala response to aversive taste: implications for placebo. Brain Behav Immun 20(2):120–132

    Article  PubMed  Google Scholar 

  22. Bantick SJ et al (2002) Imaging how attention modulates pain in humans using functional MRI. Brain 125(Pt 2):310–319

    Article  PubMed  Google Scholar 

  23. Tracey I et al (2002) Imaging attentional modulation of pain in the periaqueductal gray in humans. J Neurosci 22(7):2748–2752

    CAS  PubMed  Google Scholar 

  24. Eippert F et al (2009) Activation of the opioidergic descending pain control system underlies placebo analgesia. Neuron 63(4):533–543

    Article  CAS  PubMed  Google Scholar 

  25. Watson A et al (2009) Placebo conditioning and placebo analgesia modulate a common brain network during pain anticipation and perception. Pain 145(1–2):24–30

    Google Scholar 

  26. Krummenacher P et al (2010) Prefrontal cortex modulates placebo analgesia. Pain 148(3):368–374

    Article  PubMed  Google Scholar 

  27. Benedetti F et al (2006) Loss of expectation-related mechanisms in Alzheimer’s disease makes analgesic therapies less effective. Pain 121(1–2):133–144

    Google Scholar 

  28. Wiech K et al (2006) Anterolateral prefrontal cortex mediates the analgesic effect of expected and perceived control over pain. J Neurosci 26(44):11501–11509

    Article  CAS  PubMed  Google Scholar 

  29. Kalisch R et al (2005) Anxiety reduction through detachment: subjective, physiological, and neural effects. J Cogn Neurosci 17(6):874–883

    Article  PubMed  Google Scholar 

  30. Fairhurst M et al (2007) Anticipatory brainstem activity predicts neural processing of pain in humans. Pain 128(1–2):101–110

    Google Scholar 

  31. Keltner JR et al (2006) Isolating the modulatory effect of expectation on pain transmission: a functional magnetic resonance imaging study. J Neurosci 26(16):4437–4443

    Article  CAS  PubMed  Google Scholar 

  32. Tracey I, Iannetti GD (2006) Brainstem functional imaging in humans. Suppl Clin Neurophysiol 58:52–67

    Article  PubMed  Google Scholar 

  33. Melzack R (1990) Phantom limbs and the concept of a neuromatrix. Trends Neurosci 13(3):88–92

    Article  CAS  PubMed  Google Scholar 

  34. Price DD et al (2007) Placebo analgesia is accompanied by large reductions in pain-related brain activity in irritable bowel syndrome patients. Pain 127(1–2):63–72

    Google Scholar 

  35. Koyama T et al (2005) The subjective experience of pain: where expectations become reality. Proc Natl Acad Sci U S A 102(36):12950–12955

    Article  CAS  PubMed  Google Scholar 

  36. Petrovic P et al (2000) Pain-related cerebral activation is altered by a distracting cognitive task. Pain 85(1–2):19–30

    Google Scholar 

  37. Hoffman HG et al (2006) Using FMRI to study the neural correlates of virtual reality analgesia. CNS Spectr 11(1):45–51

    PubMed  Google Scholar 

  38. Matre D, Casey KL, Knardahl S (2006) Placebo-induced changes in spinal cord pain processing. J Neurosci 26(2):559–563

    Article  CAS  PubMed  Google Scholar 

  39. Lilja J et al (2006) Simultaneous functional magnetic resonance imaging in the rat spinal cord and brain. J Neurosci 26(2):6330–6336

    Article  CAS  PubMed  Google Scholar 

  40. Stroman PW, Kornelsen J, Bergman A et al (2004) Noninvasive assessment of the injured human spinal cord by means of functional magnetic resonance imaging. Spinal Cord 42:59–66

    Article  CAS  PubMed  Google Scholar 

  41. Eippert F et al (2009) Direct evidence for spinal cord involvement in placebo analgesia. Science 326(5951):404

    Article  CAS  PubMed  Google Scholar 

  42. Akil H et al (1984) Endogenous opioids: biology and function. Annu Rev Neurosci 7:223–255

    Article  CAS  PubMed  Google Scholar 

  43. Matthes HW et al (1996) Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid-receptor gene. Nature 383(6603):819–823

    Article  CAS  PubMed  Google Scholar 

  44. Zubieta JK et al (2001) Regional mu opioid receptor regulation of sensory and affective dimensions of pain. Science 293(5528):311–315

    Article  CAS  PubMed  Google Scholar 

  45. Wall P (1999) Textbook of pain. In: Wall P, Melzack R (eds) Churchill Livingstone, pp 1419–1430

  46. Benedetti F, Arduino C, Amanzio M (1999) Somatotopic activation of opioid systems by target-directed expectations of analgesia. J Neurosci 19(9):3639–3648

    CAS  PubMed  Google Scholar 

  47. Wager TD, Scott DJ, Zubieta JK (2007) Placebo effects on human mu-opioid activity during pain. Proc Natl Acad Sci U S A 104(26):11056–11061

    Article  CAS  PubMed  Google Scholar 

  48. Zubieta JK et al (2005) Placebo effects mediated by endogenous opioid activity on mu-opioid receptors. J Neurosci 25(34):7754–7762

    Article  CAS  PubMed  Google Scholar 

  49. Pertwee RG (2001) Cannabinoid receptors and pain. Prog Neurobiol 63(5):569–611

    Article  CAS  PubMed  Google Scholar 

Download references

Interessenkonflikt

Keine Angaben.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Bingel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bingel, U. Mechanismen der endogenen Schmerzmodulation am Beispiel der Placeboanalgesie. Schmerz 24, 122–129 (2010). https://doi.org/10.1007/s00482-010-0901-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00482-010-0901-7

Schlüsselwörter

Keywords

Navigation