Skip to main content
Log in

Neuropathische Schmerzsyndrome und Neuroplastizität in der funktionellen Bildgebung

Neuropathic pain and neuroplasticity in functional imaging studies

  • Schwerpunkt
  • Published:
Der Schmerz Aims and scope Submit manuscript

Zusammenfassung

Neuropathische Schmerzsyndrome sind durch das Auftreten von spontanen und Stimulus-induzierten Schmerzen gekennzeichnet. Stimulus-induzierte Schmerzen (Hyperalgesie und Allodynie) können prinzipiell aus Sensibilisierungsprozessen im peripheren (primäre Hyperalgesie) oder zentralen Nervensystem (sekundäre Hyperalgesie) resultieren. Während die zugrunde liegenden pathophysiologischen Vorgänge am Nozizeptor und die relevanten spinalen synaptischen Prozesse mittlerweile besser verstanden werden, sind die zerebralen Areale, die für die Vermittlung von Hyperalgesie und Allodynie relevant sind, noch Gegenstand kontroverser Diskussion. In den letzten Jahren haben sich insbesondere durch den Einsatz von funktionellen bildgebenden Methoden (funktionelle Magnetresonanztomographie, fMRT; Magnetenzephalographie, MEG; Positronenemissionstomographie, PET) neue Einblicke in fehlgeleitete Verarbeitungsprozesse von neuropathischen Schmerzsyndromen ergeben. In dieser Übersicht werden verschiedene Mechanismen erläutert, die zu einer Chronifizierung von Nervenschmerzsyndromen beitragen können. Dazu zählen Reorganisationsphänomene von somatotopen Karten in sensorischen und motorischen Arealen (insbesondere relevant bei Phantomschmerzen und Komplex-regionalen Schmerzsyndromen), Intensitätssteigerungen in primär nozizeptiven Arealen, Rekrutierung von neuen Kortexarealen, die normalerweise nicht durch Schmerzreize aktiviert werden, und fehlerhafte Aktivität von Gehirnarealen, die normalerweise eine endogene Schmerzhemmung bewirken. Daneben weisen PET-Studien auf Veränderungen von exzitatorischen und inhibitorischen Transmittersystemen hin. Weiterentwickelte Methoden der morphologischen Bildgebung (v. a. die Voxel-basierte Morphometrie) zeigen schließlich substanzielle strukturelle Veränderungen, die chronische Schmerzen auch als eine neurodegenerative Erkrankung auffassen lassen.

Abstract

Neuropathic pain syndromes are characterised by the occurrence of spontaneous ongoing and stimulus-induced pain. Stimulus-induced pain (hyperalgesia and allodynia) may result from sensitisation processes in the peripheral (primary hyperalgesia) or central (secondary hyperalgesia) nervous system. The underlying pathophysiological mechanisms at the nociceptor itself and at spinal synapses have become better understood. However, the cerebral processing of hyperalgesia and allodynia is still controversially discussed. In recent years, neuroimaging methods (functional magnetic resonance imaging, fMRI; magnetoencephalography, MEG; positron emission tomography, PET) have provided new insights into the aberrant cerebral processing of neuropathic pain. The present paper reviews different cerebral mechanisms contributing to chronicity processes in neuropathic pain syndromes. These mechanisms include reorganisation of cortical somatotopic maps in sensory or motor areas (highly relevant for phantom limb pain and CRPS), increased activity in primary nociceptive areas, recruitment of new cortical areas usually not activated by nociceptive stimuli and aberrant activity in brain areas normally involved in descending inhibitory pain networks. Moreover, there is evidence from PET studies for changes of excitatory and inhibitory transmitter systems. Finally, advanced methods of structural brain imaging (voxel-based morphometry, VBM) show significant structural changes suggesting that chronic pain syndromes may be associated with neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Amir R, Liu C, Kocsis J et al (2002) Oscillatory mechanism in primary sensory neurones. Brain 125:421–435

    Article  PubMed  Google Scholar 

  2. Amir R, Michaelis M, Devor M (1999) Membrane potential oscillations in dorsal root ganglion neurons: role in normal electrogenesis and neuropathic pain. J Neurosci 19:8589–8596

    CAS  PubMed  Google Scholar 

  3. Apkarian AV, Bushnell MC, Treede RD et al (2005) Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain 9:463–484

    Article  PubMed  Google Scholar 

  4. Apkarian AV, Sosa Y, Sonty S et al (2004) Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. J Neurosci 24:10410–10415

    Article  CAS  PubMed  Google Scholar 

  5. Baliki MN, Chialvo DR, Geha PY et al (2006) Chronic pain and the emotional brain: specific brain activity associated with spontaneous fluctuations of intensity of chronic back pain. J Neurosci 26:12165–12173

    Article  CAS  PubMed  Google Scholar 

  6. Baron R (2000) Peripheral neuropathic pain: from mechanisms to symptoms. Clin J Pain 16:S12–S20

    Article  CAS  PubMed  Google Scholar 

  7. Baron R, Baron Y, Disbrow E et al (1999) Brain processing of capsaicin-induced secondary hyperalgesia: a functional MRI study. Neurology 53:548–557

    CAS  PubMed  Google Scholar 

  8. Baumgartner U, Buchholz HG, Bellosevich A et al (2006) High opiate receptor binding potential in the human lateral pain system. Neuroimage 30:692–699

    Article  PubMed  Google Scholar 

  9. Becerra L, Morris S, Bazes S et al (2006) Trigeminal neuropathic pain alters responses in CNS circuits to mechanical (brush) and thermal (cold and heat) stimuli. J Neurosci 26:10646–10657

    Article  CAS  PubMed  Google Scholar 

  10. Birklein F (2002) Mechanism-based treatment principles of neuropathic pain. Fortschr Neurol Psychiatr 70:88–94

    Article  CAS  PubMed  Google Scholar 

  11. Borsook D, Moulton EA, Schmidt KF et al (2007) Neuroimaging revolutionizes therapeutic approaches to chronic pain. Mol Pain 3:25

    Article  PubMed  CAS  Google Scholar 

  12. Craig AD, Bushnell MC (1994) The thermal grill illusion: unmasking the burn of cold pain. Science 265:252–255

    Article  CAS  PubMed  Google Scholar 

  13. Draganski B, Moser T, Lummel N et al (2006) Decrease of thalamic gray matter following limb amputation. Neuroimage 31:951–957

    Article  CAS  PubMed  Google Scholar 

  14. Ducreux D, Attal N, Parker F et al (2006) Mechanisms of central neuropathic pain: a combined psychophysical and fMRI study in syringomyelia. Brain 129:963–976

    Article  PubMed  Google Scholar 

  15. Dworkin RH (2002) An overview of neuropathic pain: syndromes, symptoms, signs, and several mechanisms. Clin J Pain 18:343–349

    Article  PubMed  Google Scholar 

  16. Elbert T, Flor H, Birbaumer N et al (1994) Extensive reorganization of the somatosensory cortex in adult humans after nervous system injury. Neuroreport 5:2593–2597

    Article  CAS  PubMed  Google Scholar 

  17. Flor H (2002) Phantom-limb pain: characteristics, causes, and treatment. Lancet Neurol 1:182–189

    Article  PubMed  Google Scholar 

  18. Flor H, Braun C, Elbert T et al (1997) Extensive reorganization of primary somatosensory cortex in chronic back pain patients. Neurosci Lett 224:5–8

    Article  CAS  PubMed  Google Scholar 

  19. Flor H, Denke C, Schaefer M et al (2001) Effect of sensory discrimination training on cortical reorganisation and phantom limb pain. Lancet 357:1763–1764

    Article  CAS  PubMed  Google Scholar 

  20. Flor H, Elbert T, Knecht S et al (1995) Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature 375:482–484

    Article  CAS  PubMed  Google Scholar 

  21. Flor H, Nikolajsen L, Staehelin Jensen T (2006) Phantom limb pain: a case of maladaptive CNS plasticity? Nat Rev Neurosci 7:873–881

    Article  CAS  PubMed  Google Scholar 

  22. Frettloh J, Huppe M, Maier C (2006) Severity and specificity of neglect-like symptoms in patients with complex regional pain syndrome (CRPS) compared to chronic limb pain of other origins. Pain 124:184–189

    Article  PubMed  Google Scholar 

  23. Freynhagen R, Rolke R, Baron R et al (2008) Pseudoradicular and radicular low-back pain – a disease continuum rather than different entities? Answers from quantitative sensory testing. Pain 135:65–74

    Article  PubMed  Google Scholar 

  24. Fukui S, Matsuno M, Inubushi T et al (2006) N-Acetylaspartate concentrations in the thalami of neuropathic pain patients and healthy comparison subjects measured with (1)H-MRS. Magn Reson Imaging 24:75–79

    Article  CAS  PubMed  Google Scholar 

  25. Geha PY, Baliki MN, Harden RN et al (2008) The brain in chronic CRPS pain: abnormal gray-white matter interactions in emotional and autonomic regions. Neuron 60:570–581

    Article  CAS  PubMed  Google Scholar 

  26. Grachev ID, Fredrickson BE, Apkarian AV (2000) Abnormal brain chemistry in chronic back pain: an in vivo proton magnetic resonance spectroscopy study. Pain 89:7–18

    Article  CAS  PubMed  Google Scholar 

  27. Grachev ID, Thomas PS, Ramachandran TS (2002) Decreased levels of N-acetylaspartate in dorsolateral prefrontal cortex in a case of intractable severe sympathetically mediated chronic pain (complex regional pain syndrome, type I). Brain Cogn 49:102–113

    Article  PubMed  Google Scholar 

  28. Grusser SM, Diers M, Flor H (2003) Phantom limb pain: aspects of neuroplasticity and intervention. Anasthesiol Intensivmed Notfallmed Schmerzther 38:762–766

    Article  CAS  PubMed  Google Scholar 

  29. Harris RE, Clauw DJ, Scott DJ et al (2007) Decreased central mu-opioid receptor availability in fibromyalgia. J Neurosci 27:10000–10006

    Article  CAS  PubMed  Google Scholar 

  30. Hsieh JC, Belfrage M, Stone-Elander S et al (1995) Central representation of chronic ongoing neuropathic pain studied by positron emission tomography. Pain 63:225–236

    Article  CAS  PubMed  Google Scholar 

  31. Huse E, Larbig W, Birbaumer N et al (2001) Cortical reorganization and pain. Empirical findings and therapeutic implication using the example of phantom pain. Schmerz 15:131–137

    Article  CAS  PubMed  Google Scholar 

  32. Iadarola MJ, Max MB, Berman KF et al (1995) Unilateral decrease in thalamic activity observed with positron emission tomography in patients with chronic neuropathic pain. Pain 63:55–64

    Article  CAS  PubMed  Google Scholar 

  33. Jones AK, Kitchen ND, Watabe H et al (1999) Measurement of changes in opioid receptor binding in vivo during trigeminal neuralgic pain using [11C] diprenorphine and positron emission tomography. J Cereb Blood Flow Metab 19:803–808

    Article  CAS  PubMed  Google Scholar 

  34. Jones AK, Watabe H, Cunningham VJ et al (2004) Cerebral decreases in opioid receptor binding in patients with central neuropathic pain measured by [11C]diprenorphine binding and PET. Eur J Pain 8:479–485

    Article  CAS  PubMed  Google Scholar 

  35. Kuchinad A, Schweinhardt P, Seminowicz DA et al (2007) Accelerated brain gray matter loss in fibromyalgia patients: premature aging of the brain? J Neurosci 27:4004–4007

    Article  CAS  PubMed  Google Scholar 

  36. Kwong KK, Belliveau JW, Chesler DA et al (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A 89:5675–5679

    Article  CAS  PubMed  Google Scholar 

  37. Lebel A, Becerra L, Wallin D et al (2008) fMRI reveals distinct CNS processing during symptomatic and recovered complex regional pain syndrome in children. Brain 131:1854–1879

    Article  CAS  PubMed  Google Scholar 

  38. Lorenz J, Cross D, Minoshima S et al (2002) A unique representation of heat allodynia in the human brain. Neuron 35:383–393

    Article  CAS  PubMed  Google Scholar 

  39. Lotze M, Grodd W, Birbaumer N et al (1999) Does use of a myoelectric prosthesis prevent cortical reorganization and phantom limb pain? Nat Neurosci 2:501–502

    Article  CAS  PubMed  Google Scholar 

  40. Maihofner C, Baron R, Decol R et al (2007) The motor system shows adaptive changes in complex regional pain syndrome. Brain 130:2671–2687

    Article  PubMed  Google Scholar 

  41. Maihofner C, Birklein F (2007) Complex regional pain syndromes: new aspects on pathophysiology and therapy. Fortschr Neurol Psychiatr 75:331–342

    Article  CAS  PubMed  Google Scholar 

  42. Maihofner C, Forster C, Birklein F et al (2005) Brain processing during mechanical hyperalgesia in complex regional pain syndrome: a functional MRI study. Pain 114:93–103

    Article  PubMed  Google Scholar 

  43. Maihofner C, Handwerker HO (2005) Differential coding of hyperalgesia in the human brain: a functional MRI study. Neuroimage 28:996–1006

    Article  PubMed  Google Scholar 

  44. Maihofner C, Handwerker HO, Birklein F (2006) Functional imaging of allodynia in complex regional pain syndrome. Neurology 66:711–717

    Article  PubMed  Google Scholar 

  45. Maihofner C, Handwerker HO, Neundorfer B et al (2004) Cortical reorganization during recovery from complex regional pain syndrome. Neurology 63:693–701

    PubMed  Google Scholar 

  46. Maihofner C, Handwerker HO, Neundorfer B et al (2003) Patterns of cortical reorganization in complex regional pain syndrome. Neurology 61:1707–1715

    PubMed  Google Scholar 

  47. Maihofner C, Neundorfer B, Birklein F et al (2006) Mislocalization of tactile stimulation in patients with complex regional pain syndrome. J Neurol 253:772–779

    Article  PubMed  Google Scholar 

  48. Mcdermott AM, Toelle TR, Rowbotham DJ et al (2006) The burden of neuropathic pain: results from a cross-sectional survey. Eur J Pain 10:127–135

    Article  PubMed  Google Scholar 

  49. Melzack R (1999) From the gate to the neuromatrix. Pain (Suppl 6):S121–S126

  50. Melzack R (2001) Pain and the neuromatrix in the brain. J Dent Educ 65:1378–1382

    CAS  PubMed  Google Scholar 

  51. Moisset X, Bouhassira D (2007) Brain imaging of neuropathic pain. Neuroimage 37(Suppl 1):S80–S88

    Article  PubMed  Google Scholar 

  52. Napadow V, Kettner N, Ryan A et al (2006) Somatosensory cortical plasticity in carpal tunnel syndrome – a cross-sectional fMRI evaluation. Neuroimage 31:520–530

    Article  PubMed  Google Scholar 

  53. Napadow V, Liu J, Li M et al (2007) Somatosensory cortical plasticity in carpal tunnel syndrome treated by acupuncture. Hum Brain Mapp 28:159–171

    Article  PubMed  Google Scholar 

  54. Nikolajsen L, Ilkjaer S, Kroner K et al (1997) The influence of preamputation pain on postamputation stump and phantom pain. Pain 72:393–405

    Article  CAS  PubMed  Google Scholar 

  55. Ochoa Jl, Yarnitsky D (1994) The triple cold syndrome. Cold hyperalgesia, cold hypoaesthesia and cold skin in peripheral nerve disease. Brain 117(Pt 1):185–197

    Article  PubMed  Google Scholar 

  56. Ogawa S, Lee TM, Kay AR et al (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A 87:9868–9872

    Article  CAS  PubMed  Google Scholar 

  57. Pattany PM, Yezierski RP, Widerstrom-Noga EG et al (2002) Proton magnetic resonance spectroscopy of the thalamus in patients with chronic neuropathic pain after spinal cord injury. AJNR Am J Neuroradiol 23:901–905

    PubMed  Google Scholar 

  58. Petrovic P, Ingvar M, Stone-Elander S et al (1999) A PET activation study of dynamic mechanical allodynia in patients with mononeuropathy. Pain 83:459–470

    Article  CAS  PubMed  Google Scholar 

  59. Peyron R, Garcia-Larrea L, Gregoire MC et al (1998) Allodynia after lateral-medullary (Wallenberg) infarct. A PET study. Brain 121(Pt 2):345–356

    Article  PubMed  Google Scholar 

  60. Peyron R, Schneider F, Faillenot I et al (2004) An fMRI study of cortical representation of mechanical allodynia in patients with neuropathic pain. Neurology 63:1838–1846

    CAS  PubMed  Google Scholar 

  61. Pleger B, Tegenthoff M, Ragert P et al (2005) Sensorimotor retuning corrected in complex regional pain syndrome parallels pain reduction. Ann Neurol 57:425–429

    Article  PubMed  Google Scholar 

  62. Ramachandran VS, Stewart M, Rogers-Ramachandran DC (1992) Perceptual correlates of massive cortical reorganization. Neuroreport 3:583–586

    Article  CAS  PubMed  Google Scholar 

  63. Schmidt-Wilcke T, Leinisch E, Ganssbauer S et al (2006) Affective components and intensity of pain correlate with structural differences in gray matter in chronic back pain patients. Pain 125:89–97

    Article  CAS  PubMed  Google Scholar 

  64. Schmidt-Wilcke T, Luerding R, Weigand T et al (2007) Striatal grey matter increase in patients suffering from fibromyalgia – a voxel-based morphometry study. Pain 132(Suppl 1):S109–S116

    Article  PubMed  Google Scholar 

  65. Schweinhardt P, Glynn C, Brooks J et al (2006) An fMRI study of cerebral processing of brush-evoked allodynia in neuropathic pain patients. Neuroimage 32:256–265

    Article  PubMed  Google Scholar 

  66. Schwenkreis P, Janssen F, Rommel O et al (2003) Bilateral motor cortex disinhibition in complex regional pain syndrome (CRPS) type I of the hand. Neurology 61:515–519

    CAS  PubMed  Google Scholar 

  67. Seifert F, Jungfer I, Schmelz M et al (2008) Representation of UV-B-induced thermal and mechanical hyperalgesia in the human brain: a functional MRI study. Hum Brain Mapp 29:1337–1342

    Article  Google Scholar 

  68. Seifert F, Maihofner C (2007) Representation of cold allodynia in the human brain – a functional MRI study. Neuroimage 35:1168–1180

    Article  PubMed  Google Scholar 

  69. Sprenger T, Henriksen G, Valet M et al (2007) Positron emission tomography in pain research. From the structure to the activity of the opiate receptor system. Schmerz 21:503–513

    Article  CAS  PubMed  Google Scholar 

  70. Tecchio F, Padua L, Aprile I et al (2002) Carpal tunnel syndrome modifies sensory hand cortical somatotopy: a MEG study. Hum Brain Mapp 17:28–36

    Article  PubMed  Google Scholar 

  71. Tolle TR, Baron R (2002) Neuropathic pain. Basic principles for successful therapy. MMW Fortschr Med 144:41–44

    PubMed  Google Scholar 

  72. Tracey I, Mantyh PW (2007) The cerebral signature for pain perception and its modulation. Neuron 55:377–391

    Article  CAS  PubMed  Google Scholar 

  73. Treede RD, Kenshalo DR, Gracely RH et al (1999) The cortical representation of pain. Pain 79:105–111

    Article  CAS  PubMed  Google Scholar 

  74. Willoch F, Schindler F, Wester HJ et al (2004) Central poststroke pain and reduced opioid receptor binding within pain processing circuitries: a [11C]diprenorphine PET study. Pain 108:213–220

    Article  CAS  PubMed  Google Scholar 

  75. Willoch F, Tolle TR, Wester HJ et al (1999) Central pain after pontine infarction is associated with changes in opioid receptor binding: a PET study with 11C-diprenorphine. AJNR Am J Neuroradiol 20:686–690

    CAS  PubMed  Google Scholar 

  76. Witting N, Kupers RC, Svensson P et al (2001) Experimental brush-evoked allodynia activates posterior parietal cortex. Neurology 57:1817–1824

    CAS  PubMed  Google Scholar 

  77. Witting N, Kupers RC, Svensson P et al (2006) A PET activation study of brush-evoked allodynia in patients with nerve injury pain. Pain 120:145–154

    Article  PubMed  Google Scholar 

  78. Woolf CJ, Mannion RJ (1999) Neuropathic pain: aetiology, symptoms, mechanisms, and management. Lancet 353:1959–1964

    Article  CAS  PubMed  Google Scholar 

  79. Yang TT, Gallen CC, Ramachandran VS et al (1994) Noninvasive detection of cerebral plasticity in adult human somatosensory cortex. Neuroreport 5:701–704

    Article  CAS  PubMed  Google Scholar 

  80. Zambreanu L, Wise RG, Brooks JC et al (2005) A role for the brainstem in central sensitisation in humans. Evidence from functional magnetic resonance imaging. Pain 114:397–407

    Article  CAS  PubMed  Google Scholar 

Download references

Danksagung

Diese Arbeit wurde unterstützt durch den Deutschen Forschungsverbund „Neuropathischer Schmerz“ (DFNS) des Bundesministeriums für Bildung und Forschung und durch die Deutsche Forschungsgemeinschaft (MA 3345/11-1).

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Maihöfner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maihöfner, C., Nickel, F. & Seifert, F. Neuropathische Schmerzsyndrome und Neuroplastizität in der funktionellen Bildgebung. Schmerz 24, 137–145 (2010). https://doi.org/10.1007/s00482-010-0902-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00482-010-0902-6

Schlüsselwörter

Keywords

Navigation